
1,

.... + -J _A i:U"_'_/iw -_ I "-

.7l-m _-_/£

7

(HASA-CR-i8740d) EVALUATION OF THE

TRAJECTORY OPERATIONS APPLICATIONS

TASK (TOAST) (Houston Univ.) 65 p

SOFTWARE

CSCL 09B

EVALUATION

N91-13104

Unc! <_s

G3/Ol 0312546

OF THE TRAJECTORY OPERA TIONS

APPLICATIONS SOFTWARE TASK

('TOAST) .

i

Sharon Perkins
University of Houston-Clear Lake

_- _--_ ---_ Andrea Martin

................................ Bill Bavinger
Rice University

: 2

Aullust 27, 1990

Cooperative Agreement NCC 9-16
Research Activity SE.36

NASA Johnson Spice Center

Million Operations Directorate

© ©
' / _1

Research Institute for Computing and Information Systems

University of Houston - Clear Lake

T.E.C.H.N.I.C.A .L R" E--P_O :R" T

7S

1,f

4 -

7--;•- 7 "

= m

The

RICIS

Concept

f
:- - _j

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space _

Center and local industry to actively support research in the computing and _
information sciences. As part of this endeavor, UH-Clear Lake proposed a

partnership with JSC to jointly define and manage an integrated program of research

in advanced data processing technology needed for JSC's main missions, including _ :.

admlnlst ratlve, engineering andscience _responsibilities. JSC agreed an d entered i nto _ #_r

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to - -'_-

jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educatiqaal facilities are shared

by the two institutions to conduct the research. =

The mission of RICIS is to conduct, coordinate and disseminate research on "_

computing and information systems among researchers, sponsors and users from

UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear

Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human --"

Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept_ UH-Clear . =
Lake establishes relationships with other universities and research organizations,

having common research interests, to provide additional sources of expertise to --
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and

research objectives to advance knowledge in the computing and information

sciences. Working jointly with NASA/JSC, RICIS advises on research needs, -"
recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.

m

.. z

m

EVALUATION

OF THE TRAJECTORY OPERA TIONS

APPLICATIONS SOFTWARE TASK

(TOAST)

km

. T

I

Jig

m

In

iw

k

II

qlw

I

Imlw

W

m _w

i

Preface

m This research was conducted under the auspices of the Research Institute for

Computing and Information Systems by: Dr. Sharon Perkins, and Dr. Alfredo

Perez-Davila, both Assistant Professors of Computer Science, University of

Houston-Clear Lake; Ms. Andrea Martin, Manager, Computing Resource Center,

Rice University; Bill Bavinger, Assistant Professor of Architecture, Rice University;
David Boyes, consultant; and Dr. Livia Polanyi, consultant. Dr. Sharon Perkins

served as RICIS research representative.

Funding has been provided by Flight Design and Dynamics, within Mission

Operations Directorate, NASA/JSC through Cooperative Agreement NCC 9-16

between NASA Johnson Space Center and the University of Houston-Clear Lake.
The NASA technical monitor for this activity was Mike Evans.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or
implied, of NASA or the United States Government.

w

!

F

Overview

The Trajectory Operations Applications Software Task (TOAS_ is a software development
project under the auspices of the Mission Operations Directorate. Its purpose is to provide
trajectory operation pre-mission and real-time support for the Space Shuttle program.

As an Application Manager, TOAST provides an isolation layer between the underlying
Unix operating system and the series of user programs. It provides two main services:

1. A common interface to operating system functions with semantics

appropriate for C or FORTRAN

2. A structured input and output package that can be utilized by user application

programs.

These two services can be used independently of the environment, providing a flexible
application toolkit.

In order to evaluate TOAST as an Application Manager, RICIS undertook an evaluation of
the system under NASA Cooperative Agreement NCC 9-16. The task was to
assess current and planned capabilities, compare capabilities to functions available in
commercially-available off the shelf (COTS) software, and analyze requirements of
Mission Control Center (MCC) and Flight Analysis Design System (FADS) users for
TOAST implementation. The project team consisted of faculty, staff, and students from
University of Houston-Clear Lake and Rice University. Principal investigators were
Sharon Perkins, Andrea Martin, and Bill Bavinger.

The evaluation began on March 28, 1990 and completed September 1, 1990. Preliminary
results were presented to Flight Dynamics on June 1. Security briefings were delivered on
May 24 and June 7. An executive brief'rag for management was presented on June 21. A
formal presentation to the NASA community was presented on June 22. An additional
executive briefing for Flight Design management was delivered on July 10.

As a result of our investigation, we found that the current version of TOAST is well
implemented and meets the needs of the real-time users. The plans for migrating TOAST to
the X Window System are essentially sound; the Executive will port with minor changes,
while Menu Handler will require a total rewrite. In this report, we include a series of
recommendations for future TOAST directions, which is summarized as follows:

Plan for a distributed operating environment with
services, such as event notification, authentication and

configuration management, database, and graphical user
interfaces, provided via a high speed network.

Jill

V

m

w

I

V

2

v

v

..._.

Table of Contents

List of Figures

Acronym Glossary

I. The Task

II. Project Team Synopsis

III. Our Approach

IV. High Level Summary

V. Needs Analysis
A. User Requirements

1. Evaluation Strategy
2. Task Analysis

a. Tasks Common to FDOs and Orbit Flight Design Users
b. Tasks of Orbit Flight Design
c. Tasks of Flight Dynamics Officers (FDOs)

3. Requirements
a. Requirements of Orbit Flight Designers
b. FDO Requirements
c. Additions to TOAST to Support Flight Design
d. Summary

B. Environmental Constraints

C. Design Philosophy

VI.

1. Role of an Application Manager
2a. Executive-based Design
2b. Overall Evaluation of TOAST Executive

3a. Structured Display Control
3b. Continuum of User Interfaces
3c. Overall Evaluation of Menu Handler

4a. Menu-Application-Display (MAD) Model
4b. Overall Evaluation of Menu-Application-Display (MAD) Model
5a. User Requirements versus Design Implementation
5b. Overall Evaluation of User Requirements Implementation

Technical Analysis
A. Fault Tolerance

1. Task of Fault Tolerance

2. Evaluation Strategy
3. Fault Tolerance in TOAST

4. Strengths of Present Implementation
5. Weaknesses of Present Implementation
6. Overall Evaluation of Strengths and Weaknesses
7. Recommendation

8. Summary

6

7

11

12

13
13

14
14
14
15
15
15
15
16
16
16
17
17
18
19
19
20
20
21
21
22
22

23
23
23

23
23
24
24
24
24
24

3

VII.

B. Portability
1. Task of Portability
2. Evaluation Strategy
3. Portability in TOAST
4. Strengths of Present Implementation
5. Weaknesses of Present Implementation
6. Recommendation

7. Summary

C. Comparison: Muld-Level Menu System to COTS Application Manager
1. Task of a Menu Application System
2. Evaluation Strategy
3. Multi-Level Menu System in TOAST
4. Strengths of Present Implementation
5. Weaknesses of Present Implementation
6. Overall Evaluation of Strengths and Weaknesses
7. Recommendation

8. Summary
D. Comparison: Menu Handler to Text-based COTST_ikits

1. Task of Forms Generation and Display Packages

2. Implementation in TOAST
3. Evaluation Strategy
4. Strengths of Present Implementation
5. Weaknesses of Present Implementation
6. Overall Evaluation of Strengths and Weaknesses
7. Recommendation

8. Summary
E. Data Structures

1. Task of Data Structures
2. Data Structures in TOAST

3. Evaluation Strategy
4. Strengths of Present Implementation
5. Weaknesses of Present Implementation
6. Recommendation

7. Summary
F. Security

1. Task of Security
2. Evaluation Strategy
3. Security in TOAST
4. Strengths of Present Implementation
5. Weaknesses of Present TOAST Implementation
6. Weaknesses of the Environment

7. Overall Evaluation of Security Strengths and Weaknesses
8. Recommendation

9. Summary

Man/Machine Interface

A. Applications Programming Envirgnment
1. Evaluation Strategy
2. Strengths of Programming Environment
3. Weaknesses of Programming Environment
4. Recommendation

B. User Interface Capabilities

25
25
25
25
25
25
25
25
26
26
26
26
26
27
27
27
27
27
27
28
28
28
29
29
29
29
30
30
30
30
30
30
30
30
31
31
31
31
31
31
32
32
32
32

33
33
33
33
33
34
34

w

"!111

III

i

!

V

w

m

m

m

4

w

,: ±

i

V

v

VIII. Software Engineering
A. Coding Practices

1. Evaluation Strategy
2. Evaluation Criteria

3. Implementation in TOAST Software
4. Recommendation

5. Summary
B. Documentation Review

l°

2.
3.
4.
5.
6.
7.

C. Revision
1.
2.
3.
4.
5.
6.

Evaluation Strategy
Evaluation Criteria

Implementation in Menu Handler Documentation
Strengths of Menu Handler Documentation
Weaknesses of Menu Handler Documentation
Recommendation

Summary
Practices

Evaluation Strategy
Evaluation Criteria
The Revision Process for TOAST
Problem Areas
Recommendation

Summary

IX.

35
35
35
35
36
37

37
38
38
38
38
39
39
39
40
40
40
40
40
41
41
42

X°

Future TOAST Migrations 43
A. TOAST Under X 43

1. Evaluation Strategy 43
2. The X Window System 43
3. The Plan for TOAST under X 45

4. Discussion of Implementation Plans 46
a. Features that can be Implemented using Existing X Tools 46
b. Clocks and DDDs 46

c. Single Window 46
d. Function Keys 47
e. TOAST Resource Manager 47

5. Recommendation 47

6. Evaluation of Extent of Code Revision to Migrate TOAST to X 49
B. Expandability 50

Industry Perspective
A. Graphical User Interfaces (GUI)
B. Standard Graphics Packages
C. Database Systems
D. Distributed Authentication Systems
E. Network Services

F. Distributed Operating Systems

XI. Recommendations for Future Directions

XII. Further Reading

XIII. Acknowledgements

51
51
51
52
52
52
53

54

56

62

List of Figures i

Figures

1. Evaluation Criteria

2. TOAST Evaluation Interview Subjects

3. TOAST as Application Manager

4. Continuum of System Executives

5. Continuum of User Interfaces

6. Menu-Application-Display (MAD) Model

7. Prologue used in TOAST programs

8. Features that can be Implemented using Existing X Tools

9. Expandability: Advantages and Constraints of the Current Version

Page

8

13

18

19

20

21

36

46

5O

I

IlI

7._

I

w

6

I

Acronym Glossary

AEP
API
BSD
COTS
CR
DDD
DoD
DR
DWIM
FADS
FIX)
FDS
GKS
GOSIP
GUI
I/O
IPCJRPC
ISO
JCL

LAN
MAD
MOC
MOD
MCC
ODP
ONAV
OS
OSI
PEX
PHIGS

QBE
RAVL
RICIS
SAA
SOW

SQL
SVID

TCP/IP
TOAST
TRM
TWG
WAN
WEX
X11R4

Arbitrary Event Protocol
Applications Programmer Interface
Berkely Standard Distribution
Commercially-available Off The Shelf
Change Request
Discrete Data Display

Deparmaent of Defense
Discrepancy Report
Do what I mean

Flight Analysis Design System
Flight Dynamics Officer
Flight Design System
Graphics Kernel System
Government Open System Interface Program
Graphical User Interface
Input/Output
InterProcess Communication/Remote Procedure Call

International Standards Organization
Job Control Language
Local Area Network

Menu, Application, Display
Mission Operations Computer
Mission Operations Directorate
Mission Control Center

Orbit Design Panel
Orbit Navigation
Operating System

Open Systems Interconnect
PHIGS Extension to X

Programmer's Hierarchical Interactive Graphics System

Query by Example
Rice Advanced Visualization Lab

Research Institute for Computing and Information Systems

Systems Application Architecture
Statement of Work

Structured Query Language
System V Interface Definition
Transport Communications Protocol/Interconnect Protocol
Trajectory Operations Applications Software Task
TOAST Resource Manager
TOAST Working Group
Wide Area Network
Workstation Executive

Version 11 Release 4 of MITs X Window System

7

I. The Task t

The purpose of this evaluation was to asses the capabilities of the Trajectory Operations
Applications Software Task (TOAST) as an Application Manager. Our task was to assess
current and planned capabilities, compare capabilities to functions available in
commercially-available off the shelf (COTS) software, and analyze requirements of
Mission Control Center (MCC) and Flight Analysis Design System (FADS) users for
TOAST implementation.

Specific evaluation criteria listed in the NASA Statemeiit bf-Work dated March 6, 1990,

and sections of this report in which they are discussed are shown in Figure 1.

SOW Report
s_tion Section

Environmental constraints 2.1 V. B
Standard application manager capabilities 2.2 V. C, VI

and services
User requirements versus design 2.3 V. C
User/programmer tools 2.4 VII. A
User interface 2.5 VII. B
Application manager applications 2.6 V. C, VI
User protection and user access 2.7 VI. F
Data structures 2.8 VI. E
Coding practices 2.9 VIII. A
Portability 2.10 VI. B
Reliability 2. l I VI. A
Expandability 2.12 IX. B
Vulnerability 2.13 VI. F
Application interface 2.14 V. C, VI. C
X-windows 2.15 IX. A
Future of TOAST 2.16 X, XI

Figure i: Evaluation Criteria

m

,lW

V

I

t=ugm

tp

IIW

_6

m

II. Project Team Synopsis

Evaluation of the NASA TOAST Executive involv&t apl_|ication_and integration of

expertise, equipment, techniques and methods in the areas of task analysis, softwfi/e
engineering practice, man/machine interface, and systems simulation and testing. To
provide the technical response to the interdisciplinary challenge of the TOAST Executive
audit, RICIS assembled a team 0fexperts from UH Clear Lake and RiCe University
equipped with the hardware and software resources necessary to meet the challenge of the
evaluation task.

The principal investigators composed faculty and staff from UH Clear Lake and Rice
University. Dr. Sharon Perkins, a faculty member in Computer Science at UH Clear Lake,

provided overall project coordination. Ms. Andrea Martin, head of the Computing

Resource Center at Rice University, served as project manager and coordinated the day to

m

lit

W

W T

m
I

qil

W ;

day operation ahd scheduling of project activities. Together, they were responsible for
reporting the interim and final results of the audit to responsible supervisory personnel at
NASA. Professor Bill Bavinger, director of the Rice Advanced Visualization Lab,
provided technical direction in the analysis of the evaluation data and graphics directions.

The Principal Investigators were assisted by Mr. David Boyes, Dr. Livia Polanyi, Dr.
Alfredo Perez-Davila and technical staff. Mr. Boyes, who is president of dboyes
Consulting and subcontractor on this research proposal, performed the TOAST software
technical analysis and provided research support for comparisons with emerging and
established industry standards. Dr. Livia Polanyi, a member of the Linguistics and
Semiotics Department at Rice, developed the interview materials, administered the
interviews, and analyzed the resulting data. Dr. Polanyi was responsible for developing
the model of the task, users, and environment that was used in evaluating the adequacy of
the TOAST environment to meet fully the challenge of the Mission Operations Directorate
(MOD) project requirements. Dr. Alfredo Perez-Davila, a faculty member in Computer
Science at UH Clear Lake, provided support for operating systems analysis.

Investigators

Sharon Perkins, Assistant Professor of Computer Science, UH Clear Lake
Dr. Perkins is an Assistant Professor in the Computer Science department at the University
of Houston-Clear Lake where she is involved in teaching and research in image processing
and computer graphics. She has been involved with several NASA-JSC research projects
concerning workstation evaluation and software life cycle definition for the Engineering
Directorate. She worked for IBM in Austin from 1980 to 1982, and has been a reviewer

for IBM Systems Journal since 1985. She taught computer science at UT Austin and
North Texas State University. She received a Ph.D from Texas A&M University in 1980.

Andrea Martin, Manager, Computing Resource Center, Rice University.
As head of user services, Ms. Martin directs a group of programmers, local area network

specialists, trainers, and technical writers who support over 4000 users on Unix, IBM, and
microcomputer systems. A member of the Rice Advanced Visualization Lab research team,
she hasworked as a research associate on a grant from IBM. From 1984 to 1987, she was
director of the Rice Macintosh Software Development Project, which developed and
delivered software applications including Conformal Maps, TSO Kermit, FlashCard, Pecos
Pictorial Database, Plotting Calculus Derivatives, and Better Letter Guide. She currently
serves as an advisor for the Smartnode program for the Cornell National Supercomputing
Facility and is on the steering committee for the Rice Center for Scholarship and
Information. She received a masters degree from Rice University in 1984.

Bill Bavinger, Assistant Professor of Architecture, Rice University.
Mr. Bavinger is Director of the Rice Advanced Visualization Lab. He has served as an

investigator on grants and studies from the Department of Energy, U.S. Army Corps of
Engineers, National Science Foundation, the Houston Design Center, the NASA JSC
Engineering Directorate, and IBM. A practicing architect, he has been involved in 4
exhibits. As president of the Third Coast Computer Graphics Group, he published
Computer m'aphia: New Visions of Form. Fantasy. and Function. Since 1979, he has
published 6 articles and 12 major research reports. His research interests are in leading

edgegraphicssystems,geographicinformationsystems,enterpriseplanning,andscientific
visualization.

I

Technical Staff

David Boyes, President, dboyes Consulting. ° :
Mr. Boyes is the head of dboyes Consulting, a computer consulting firm. He serves as a

systems programmer responsible for IBM mainframe systems supporting a wide range of
numerically intensive and educational computing resources at Rice University. He has
pursued intensive research in artificial image enhancement systems, networking, interactive
computer graphics and three-dimensional solid modeling systems using the X window
system, and character recognition algorithms as part of an NSF/NEH joint project to
enhance damaged or eroded rfiofiuments in Roman Gaul. He has workedon a JPL grant to
study data flow to improve imaging performance for the Voyager project, supported a
distributed operating systems project at the University of Oregon, implemented IBM's
network job entry system for TOPS- 10, TOPS-20, and Unix, and has researched network
bridging services and protocol conversion for TCP/IP and DECnet. His interests include
distributed operating systems and real-time embedded control systems, as well as design of
cooperative work environments for non-traditional computer users. He is participating on
the review committee for the Government Open System Interface Program (GOSIP), which
is developing a user interface standard for applications running on government systems.

He has published papers in distributed operating system design and received an M.A.
degree from the University of Oregofi in i988.

,lw

Ill

W

NIl

W

Consu_[tant

Livia Polanyi, Associate Professor of Linguistics and Semiotics, Rice University.
Dr. Polanyi is an Associate Professor in the Linguistics and Semiotics department at Rice
University where she is involved in teaching and research in computationaI linguistics,
cognitive science, design of intelligent tutoring systems, and communication and discourse
theory. She is a member of the Computer and Information Technology Institute, an
interdisciplinaryconsortium of Rice faculty who perform research in areas related to
leading edge computing technology. She received a Ph.D from University of Michigan in
1978. From 1978 to 1985, she worked as an Associate Professor at the University of
Amsterdam. She has w6rked for BBNLaqgsas a senior scienust m the Artificial ?V!!

...

Intelligence Department and as a consultant to the Information Sciences Division. During
her tenure there, she led a project for the US Navy to design and implement an intelligent
document analysis and retrieval workstation involving advanced human interfaces,
intelligent text analysis, and expert system technology. She has served as principal
consultant on grants from the Ford Foundation and the National Institute of Mental Health.
She is on the review board for Language, reviews proposals for the National Science
Foundation, is on the editorial board for TEXT, and serves as a reviewer for 4 journals.
She is the author of The Structure of Discourse and Telling the American Story_; A
Structural and Cultura! Aoi_lvsis of Conversation StoryTelling, and has published 30
arficles_- Her research interests are in computational linguistics, artificial intelligence,

knowledge representation and acquisition, and communication theory.

Alfredo Perez-Davila,Assistant Professor of Computer Sc_en.c_e_,UH Clear Lal_e .
Dr. Pe_z--DaVH_i is an Assistant Professor in the Coih_utei cScScScScScScScScS_tn_edep_erit at
University of Houston-Clear Lake where he is involved in teaching and research in

10

m
W

!

i
B
lit

7

i

m

V

w

W

V

operating systems. He was recently involved in a NASA-JSC research project to interface
an artificial intelligence printer controller running under OS/2 with the host environment in
the MCC. From 1987 to 1989, he was an Assistant Professor of Computer Science at the
University of Pittsburgh. He received a Ph.D from Vanderbilt University in 1987.

w

III. Our Approach

The evaluation team approached the review of the TOAST Executive in five stages:

1. We built a conceptual model of the framework of tasks that the end users axe expected to
complete within the environment and established a set of appropriate criteria to use in
determining how closely TOAST conformed to the original design criteria and user
expectations. To gather the information necessary to build a useful model, we conducted,
transcribed, and edited over 30 hours of interviews with users, system designers,

application programmers, and management. Volumes I and II of the interview
transcriptions are attached as separate documents. To understand the needs of flight design
users better, we viewed a demonstration of the Flight Design System (FDS). We also

observed TOAST use in the MCC during STS-31.

2. We conducted a detailed technical review of the performance of the TOAST Executive
under the stress of seriously abnormal operating conditions as well as normal conditions.

As part of the data gathering for this phase, we reviewed the code with the TOAST
developers, extensively tested and used the Masscomp development systems, and
investigated the MCC TOAST environment hands-on during User Computation Time.

3. We analyzed the man/machine interface. Our programmers wrote FORTRAN and C

TOAST applications to exercise the programmer applications interface.

4. We examined software engineering practices. We reviewed the TOAST code and
examined external documentation. We also investigated the techniques used by the

development team to manage system configuration, user problem reports, and changes to
the system.

5. We developed a set of recommendations for enhancements or changes to the existing

system basecl on the results of the tests and analyses conducted during the review process
and current trends in industry.

v

11

V

IV. High Level Summary

The TOAST software is workstation software that was developed for the trajectory flight
controllers. It consists of an Executive, which provides an operating environment and
coordinates user applications, and Applications, which are user programs. It provides the
capability for several users to access TOAST simultaneously (multi-user), more than one

process to execute simultaneously (multi-tasking), TOAST users to access multiple
independent concurrent sessions (multi-session), and for users supportfng more than one
flight control position to simultaneously use TOAST (multi-position). Transparent
cooperative processing (multi-machine), where users access resources across a network, is
a future goal.

This section presents a high level summary of the evaluation results. All results are
described in detail in the body of this report.

Needs

#

Analysis (section V)
TOAST can serve the needs of flight design and real-time.
The overall design philosophy is sound.

The Menu-Application-Display model is a good approach for dividing program
functionality.
TOAST implements initial user requirements.
Environmental and systems management constraints severely hinder the
development process.

Technical Analysis (section VI)
• TOAST is not fault tolerant.

• TOAST is portable.
• Menu Handler compares well with other COTS text-based menu handling toolkits.
• Multi-level menus are sufficient for current needs.

• Flat files are a reasonable method for storing baseline, incremental, and
configuration data.

I

W

w

W

Man/Machine Interface (section VII)

• Applications are reasonably easy to develop.
• The FORTRAN interface to TOAST provides reasonable services.
• Menu Handler provides unique features for user interface in data validation, time

and date fields, and scrolling regions within menus.
• A menu layout tool would be helpful.

Software Engineering (section VIII)
• The code is well written and well implemented.
• External documentation needs an index and more detail in tables of contents.

• The revision process needs changes to accommodate an increasing user base.

TOAST under X (section IX)
• The TOAST under X design is generally sound.
• Clocks and Discrete Data Displays (DDDs) will be difficult to implement.
• The TOAST Executive will port to X with minimal change.

• Over 90% of Menu Handler will need rewriting to utilize X.

W

..._..

W

m

=

12

w

"'V

LL.r

The next sections of this report provide detail for the f'mdings in the high level summary.
Specific areas that are discussed are

V°

VI.
VII.
VIII.
IX.

Needs Analysis
Technical Analysis
Man/machine Interface

Software Engineering
Future TOAST Migrations

V. Needs Analysis

Needs analysis examines the environmental constraints, user requirements, system
constraints, and design philosophy to provide a basis for software evaluation. Developing
an understanding of the tasks that the users of the system perform and the hardware,
software and managerial environment in which they work equipped the evaluation team

with a basis for judging the system's real worth -- its value to users in accomplishing their
tasks more efficiently.

v

v

A. User Requirements

1. Evaluation Strategy

To perform a full task analysis, it is necessary to supplement information obtained through
interviews with intensive onsite observation of workers carrying out their jobs. Such an
analysis lay beyond the scope of the present evaluation effort. However, we did interview
both real-time Flight Dynamics Officers (FDOs) and Orbit Flight Design users, as well as
TOAST developers, managers, and orbit navigation users, and gained much useful insight
into their practices and responsibilities. Subjects who were interviewed are listed in Figure
2 below:

-Keal:Zimt,..U.,st_
Mau Abbou

Roger Baletti
Tim Brown
Mike Evans
Keith Fletcher

Mark Haynes
Mark Riggio
Bill Tracy

Management
Scott Anderson

Chirold Epp
Greg Olivet
Kevin Williams
Bruce WiUiamson

l_ghti2r, mm
Wayne Black
Phillip Gentry
Bill Hollister

Orbit Navigation
Malise Haynes
Tony Pocklington

TOAST Develo_oers
Diane CampbcU
Ken Wallis

4

Figure 2: TOAST Evaluation Interview Subjects

13

2. Task Analysis

In the following sections, we present a synopsis of our view of tasks and the requirements
that carrying out those tasks presents for the TOAST system. Our analysis is based on the
interview materials and orientation information supplied by NASA.

a. Tasks Common to FDOs and Orbit Flight Design Users

One manager estimated that at least 50% of the tasks performed by Orbit Hight Design and
real-time FDOs are identical. Both sets of users need to integrate trajectories, target
maneuvers, and meet constraints on the mission, vehicle, or payload, and landing
opportunities.

b. Tasks of Orbit Flight Design

Pre-flighiprep_ti0n begins about two years before the flight and continues until a few

weeks before the flight. During that time, many aspects of the fight are defined including
the precise nature of the payload and the launch window. To plan for the various_--
contingencies that may develop, flight designers are responsible for modeling a number of
different flight scenarios. As a result of this modeling, flight design produces a large
amount of data that eventually will feed into the real-time operation.

The Flight Design users create a standard script that will take a flight from beginning to
end, and then change pieces of it as they finish their analysis. For example, they may
perform a Monte Carlo type analysis where they iteratively change certain parameters. To
implement the scripting or runstrearn capability, flight designers run multiple versions of
the same program one after the other. They have to have the ability to iteratively run

p ro_s and change parameters untilthey achievea desired result.

As one designer described his task, he may need to

Modify individual elements insi_ of a filel Whateverdata type they are whether

they're real, double precision, time, whatever. I ... spool particular elements, I
... extract from a huge data rde, I ... exwact the sixth element all the way clown
this data f'fle, take off one element by itself. Then I ... take that array, and I ...
shove it _toa graphics processor, and I plot the thing: _: _:_ :

In the course of their work, flight designers need to carry out numerous types of
computations involving different data types and processes. TO do so efficiently, they need
many specialized computational tools available to them.

Currently, Orbit flight designers use the Flight Design System (FDS) to carry out their

tasks. The system runs on a set of Perkin Elmer workstatiOfi'g:

m

W

z

1

W

=

II

II

g

m

W

roll

14

W

m

c. Tasks of Flight Dynamics Officers (FDOs)

The Flight Dynamics Officers (FDOs) are responsible for all aspects of the orbiter's
trajectory during missions. They are supported by back room personnel during all aspects
of flight -- ascent, orbit, descent. They work in the MCC and report to the flight director.

During the ascent phase of flight, according to one flight dynamics officer,

FDO's react. ...When you're a FIX) and you're on console, you have only one

scenario to look at, and that's the one you're currently in, and you really can't
make a scenario.

Within that scenario, they coordinate several different areas, which include retargeting
maneuvers when the shuttle has deviated slightly from the nominal trajectory, managing the
vehicle's center of gravity (CG), and computing alternative deployment opportunities, the
next primary landing site, and landing opportunities.

In real-time, users "need a product and they need it fast". A mission has a duration of
several days, but the FDO tasks may need to be accomplished in a matter of minutes or
less. Therefore, they need to know exactly how to minimize time on a task, and rely on an
expert knowledge of both the subject matter and the tools at their disposal.

.r

.,,,,¢..

3. Requirements

a. Requirements of Orbit Flight Designers

From our discussions with flight designers, it is clear that they need a number of
capabilities. Foremost anaong these are the following:

1. An ability to generate runstreams.
2. Multiple input streams stored in the user's home directory.
3. A strong emphasis on file processing including the ability to have complete control over

changing data, moving files around, and deleting files.
4. Use a large number of applications.
5. Online help.

b. FDO Requirements

From our discussions with the b'DOs, it is clear that they need a number of capabilities.
Foremost among these are the following:

1. Quick turnaround time on tasks.

2. Initialization files for menu configurations.
3. Sharing data and views of data among multiple users.

We should emphasize that task requirements need notbe the same as design specification
requirements. Task requirements are driven by the demands of the task to be done. Design
specification requirements, on the other hand, may be driven by a number of other factors

including economic feasibility, software and hardware environmental constraints, and user

15

preferences.In thepresentcase,for example,theguidelinesbaselinedin theTOAST
Requirements Document Volume I specified that applications should have the look and feel
of the MOC and that minimal keystrokes should be required to accomplish a command. In
our view, while these may be preferred by users, they are not necessitated by the demands
of the tasks themselves.

c. Additions to TOAST to Support Flight Design

As a result of discussions with the flight designers, the following additions to TOAST will
be required to support the requirements of flight design.

1. Multiple input streams stored in the user's home directory.
2. Indexed documentation with a roadmap to the system libraries. •

3. More systematic approach to support including bug fixes, training, and consulting.
4. Online help for users and applications programmers.

d. Summary

With the additions to TOAST listed in section c, TOAST should be able to support the
requirements of the FDOs and Flight Design.

m

w

B. Environmental Constraints

TOAST operates on Masscomp 6_ Computers in a Unix development environment and
real-time environment in the MCC. The real-time version of TOAST runs under the

Workstation Executive (WEX). Unisys provides system administration and software
support for the Masscomp computers. Hardware support is provided by Bendix
Corporation. TOAST and its applications are managed by NASA and Rockwellpersonnel.
The complexity of a multi-contract environment, with different vendors responsible for
different aspects of the operation, results in an extremely difficult development environment
(section C). Further problems result from high level centralized decision making which
may not be responsive to developer needs. For example, as the base for X Window
development, the TOAST developers were given one version of the X Window System,
but should be using a newer release (X1 IR4), which corrects many of the performance
problems of the earlier version while also providing additional tools that would facilitate
TOAST under X implementation.

The evaluation team encountered two problems that are viewed as system constraints to
TOAST software development.

1. Workstation Executive (WEX)

WEX use in the MCC TOAST environment imposes artificial barriers for C0nfi_ration and

system management. It compels use of programming practice that is not standard such as
using an automatic program to modify a password file. In other areas, WEX constrains
normal Unix activities such as spinning off tasks, which could be simplified and improved
upon if the TOAST c_ w_s__ot!ir_3ed. :__ : _-y_ _::..... _

16

V

_ I

W

!1

m
W

W

W

W

v

t_

2. System management and configuration problems on the TOAST Development
Masscomps.

We noted several problems in this area that warrant immediate management attention and
corrective action:

a. Our programmers encountered severe environmental difficulty while writing
applications on the TOAST developers' Masscomps due to system instability. During one
site visit, the systems crashed 3 times in 4 hours while our programmers were trying to
write code.

b. Hardware problems were worked around rather than fixed. Our programmer patched
bad blocks on a disk so that an 800 megabyte disk could be used. We observed several
problems with bad disks and memory problems that the TOAST developers have to live
with.

c. We observed inconsistently installed or poorly configured software including mail and
X. Some FORTRAN libraries on some machines were not installed in the location that the

FORTRAN compiler expected to find them.

d. Lack of regular backups or capability for users to perform their own backups.

C. Design philosophy

This section is a review of TOAST as an application manager, which consists of executive-

based design and structured display control. Executive-based design concerns the use of
software that provides a context consistent interface to system managed resources and
devices (see section 2 below). Structured display control packages present data in a
controlled format, accept and validate user input, and provide a consistent interface for the
process of acquiring and displaying data (see section 3). The discussions place the TOAST
Executive and Menu Handler within a continua of competing COTS products available

today. We also examine the Menu-Application-Display (MAD) model for dividing
application functionality (see section 4) and compare baselined user requirements with
design implementation (see section 5).

1. Role of an Application Manager

An Application Manager provides an isolation layer between the underlying Unix operating
system and the series of user programs, it provides two main services:

I. A common interface to operating system functions with semantics
appropriate for C or FORTRAN. This is called an executive.

2. A structured input and output package that can be utilized by User application

programs.

Figure 3 below illustrates this relationship.

17

TOAST

Figure 3:

_ ApplicationsPrograms)

Application |

I Operating -'_

System J

TOAST as Application Manager

2a. Executive-based Design : i i

An executive is a set of functions that provide a context consistent interface to system

managed resources and devices. Use of an executive reduces training time for
programmers.and permits previously implemented user programs to access services. In
real-time, an executive interfaces to the operating system. The executive provides calls that
are consistent with the conventions of a programming language and avoids the use of direct
manipulation with machine registers or inline assembly code. In particular for TOAST, the
Executive provides access to complex services from FORTRAN.

To cornp_ the services of the TOAST Execuiive With COTS programs, we placed TOAST
in a continuum of programs that provide a high level of application functionality and those
that require a large amount of code to be written. At the highest end of the spectrum are
experimental systems like ISIS (Comell Theory Center) and Exodos (University of
Oregon). Basedoh ahlg'g_e_Foperating System, th_e-executiv_=re_an_Upfii-arneters to
fit an underlying operating system convention. In these systems, an application program
would use only a few lines of code to achieve a large amount of functionality. At the other
extreme are systems like pSOS (Intel) and LynxOS (Lynx Computing Systems), which
provide a minimum amount of functionality. These systems _ based on low level
operating systems (slightly above the device driver interaction level) and require application

18

.-.-=

m

E_

W

!

w

.m

W

m

I

tl

11' ;

gl

J

m

m

programs to write a large amount of code to achieve reasonable functionality. Other
programs are intermediate between the two extremes. TOAST falls into this middle range
together with programs like the Unix stch'o library (standard I/O) and SAS/FSP (Statistical
Analysis System/Full Screen Product from the SAS Institute Inc.). This continuum is
shown in Figure 4 below.

:-..

",o-"

Low Functionality High

PSOS

LynxOS

TOAST

SAS/FSP

Lines of Few
Many Code

ISIS

Exodos

Figure 4: Continuum of System Executives

2b. Overall Evaluation of TOAST Executive

The current TOAST Executive is a reasonable approach.

3a. Structured Display Control

Structured display control packages present data in a controlled format, accept and validate
user input, and provide a consistent interface for the process of acquiring and displaying
data. Such a package must communicate directly with the operating system and allow user
programs to invoke its services.

At the time that TOAST was written, COTS packages for structured display control under

Unix did not exist, and a clearly accepted method for user interaction does not exist today.
The curses package (standard Unix tool) provides some of the functionality, but does not

19

w

support input processing. Unix packages that provide full-screen inpUt/output bypass the
problem by using curses for output handling and writing their own input processing code.

3b. Continuum of User Interfaces

Structured display control systems range from artificial intelligence programs that will
provide a DWIM ("do what I mean") interface to batch JCL systems. In between the two
extremes are interactive interfaces to the operating system, prompt systems, text-based
systems, and graphical user interface (GUI) packages. The range of services provided by
these systems varies gready. A diagram showing the types of systems and examples is
shown in Figure 5. The current TOAST implementation and the planned TOAST under X

version are placed within the continuum.

I

w

v

]

TOAST Current

under X TOAST

AI TAE GUls SAS Text Prompts FOS Interactive Batch
FSP Based Interface JCL

DWIM MOTIF VMS/Forms csh TSO

Open Look Oracle CMS Wylbur
DECwlndows ICCF

Mac OS

Presentatlon Manager

Figure 5: Cont_nuum of user Interfaces

W

=__

V

= =

m

W

3c. Overall Evaluation of Menu Handler

To provide the structured display control services, the TOAST team developed Menu

Handler. Similar to other packages, the TOAST Menu Handler program provides a
structured approach to screen input and output and the capability of defining structures for
displaying data and editing input. However, Menu Handier extefids curses data types by
supporting protected/unprotected fields and processing-required fields. Other than the

curses package, no package equivalentto Menu Han_er exists inthe non,X Unix :
en_ronm_nt.

lib

W

E

W

=

W

20
m

4a. Menu-Application-Display (MAD) Model

Having created the foundation for developing applications with the TOAST Executive and
Menu Handler, the TOAST team adopted the Menu-Application-Display (MAD) model as a
method for dividing program functionality into input, process, and output components. As
shown in Figure 6 below, this model allows for replacement of input and output modules
without necessitating changes to the application module.

v

L

Input Process Output

1

Figure 6: Menu-Application-Display Model

v

r

4b. Overall Evaluation of Menu'Applicati°n'Display (MAD) model

The MAD model permits independent verification and testing of each component module.
It is flexible and portable, and will ease the planned TOAST migration into an X
environment (section IX). The model provides the capability for using interfaces other than
Menu Handler. Our conclusion is that use of this model supports standard software
engineering practice and enhances the TOAST design.

21

5a. User Requirements versus Design Implementation

To compare user requirements against the implemented design, the evaluation team ..
reviewed the TOAST Requirements Document Volume I, which was baselined on May 6,
1987. Pages 3 and 4 of that document list the guidelines for TOAST implementation:

f

1.4 Guidelines

The user interface is convenient, rapid, and user friendly. Nearly all TOAST
commands are implemented via menu structure and function keys. Exceptions are
clearly noted. A shorthand command input capability is also available. Menus have
logical defaults. Cursor control is by arrow keys rather than Wordstar type controls.

• Application formulations and capabilities default to MOC requirements. However,
additional options are available in many cases. For example, the MOC Rendezvous

Targeting Processor has restrictions which may never be fixed in the MOC, but
which are removed in the IVl/TSworkstation. =

• LAN interfaces are via approved interface programs. The workstation software design
does not preclude sending any valid IVIED commands to the MOC from the

workstation, Near Real-Time Telemetry (NRT) commands are also supported.

Transportability of code is highly desirable. All programming is done in FORTRAN
or C and all hardware and system dependent code is modularized for containment and
is documented.

• The system adheres to all security requirements. This includes requirements for

converting the software from the black to the red machine.

• Initialization files are supported. The user may create unique initialization files for

analysis as well as mission support. Each of the Dual Operations sessions permits

the initial user to select the appropriate initialization file from among those
available. Logging on by flight ID alone forces the selection of the approved flight
initialization file for that flight.

• TOAST supports multiple terminals having displays controlled from one keyboard.
The user is also protected from undesired output to his terminal. Conversely, any
user is able to view data from any Session Data Area (SDA), but only the users of a
specified SDA may write to that SDA.

m
w

V ¸

===

I!

i

g

W

g

II

5b. Overall Evaluation of User Requirements Implementation

The current and planned versions of TOAST implement the functional description in the
baseline document Planned releases, to be discussed in section IX, will implement

Discrete Data Displays (DDDs), clocks, and automatic regeneration of displays for updated
data. The team was not asked to address red versus black security issues.

Our overall evaluation is that the current and planned versions of TOAST implement the
functions described in the baseline document.

In the following section, we present our technical analysis of the current TOAST

implementation.

22

w

II1

llr
i

'll

g

m

v

VI. Technical Analysis

In section VI, we present a technical analysis of TOAST including:

A. Fault tolerance

B. Portability
C. Comparison: Multi-level Menu System to COTS Application Manager
D. Comparison: Menu Handier to Text-based COTS Toolkits
E. Data Structures

F. Security

Data gathering was accomplished through reviewing code with TOAST developers,
examining sample applications, running tests on the Masscomp systems, and performing
outside research.

For each technical area, we present an overview of the area to be reviewed, summarize our

evaluation strategy, discuss the current implementation in TOAST, list strengths and
weaknesses of the implementation, present our recommendations, and summarize our
findings.

A. Fault Tolerance

1. Task of Fault Tolerance

Fault tolerance measures the robustness of a system when subjected to unexpected system
or configuration errors. Specifically, in evaluating fault tolerance capability of TOAST, we
were concerned with how TOAST interacts with the Unix operating system to intercept and

recover from problems.

g • _

2. Evaluation Strategy

Data for evaluating fault tolerance was gathered through experimentation with the TOAST
environment on the TOAST developer's Masscomps and through reading code.
Some of the tests involved removing menu files, transposing characters in menu files, and

changing bits in a TOAST executable to observe how the system responded.

3. Fault Tolerance in TOAST

The TOAST Executive and Menu Handler exhibited different behavior when subjected to
serious errors.

The TOAST Executive provides a log entry if a process has terminated abnormally. As
much of the context of the failure as can be determined superficially by portable Unix

system calls is logged also. The process produces a core dump and exits.

Menu Handier does not cope with corrupt menu files other than refusing to initialize.

23

4. Strengths of Present Implementation

Based on our tests of the TOAST environment, we found that TOAST was not fault

tolerant. However, the configuration management procedures in place (see section VIII. C)
should prevent errors serious enough to cause Unix to terminate a process.

r,¢

Ill

5. Weaknesses of Present Implementation

a. Parameter Verification

Many of the primitive routines deep within the Executive simply assume that theft
parameters axe of the correct length and type. In general, good programmers will not make
frequent mistakes of this type. However, the lack of argument checking can lead to
memory overlays or allocation "leaks", which are very difficult to find and correct.

b. Menu Handler Recovery for Corrupt Menu Files

Menu Handier does not cope with corrupt menu files except by refusing to initialize. The
process of loading all the requested menu definitions into in-core structures removes some
of the dependence on correctness and presence of the menu definition files. However, it is
fairly simple to corrupt the structure by attempting to load a menu def'mition containing a
syntax error, as load menus currently replaces any previously loaded set of menus with
the ones loaded. If ttSe load process fails, the structure is partially updated, leading to a
non-deterministic state after a failed read.

c. Signal Handler Support in the Executive
....-..._ !_- - .i__ -:= : -:- :-_:_: : : - ; : -:_:

The Executive provides no effective support for programs to establish signal handlers other
than directly manipulating the underlying OS signal handling table via signal().
Admittedly, this is a difficult task for a multi-language toolkit, but the ability to detect,
handle and recover from error conditions is an important feature that does not seem to be
available in the current implementation, and will become yet more important as TOAST
adds networking and IPCJR_PC facilities in future releases.

6. Overall Evaluation of Strengths and Weaknesses

The TOAST Executive does not expand greatly on the standard Unix error handling for a

serious process error. Parameter verification and recovery for corrupt menu files are
serious problems that need to be addressed. Support for signal handlers in the Executive,
while a useful feature, has the drawback of reducing portability.

7. Recommendation

All TOAST code should verify parameters,
Menu Handler should indicate the reason for failure.

8. Summary

If the enhancements discussed above are implemented, the Executive should be able to
provide the facilities for user programs to deal gracefully with error conditions.

w

V

m

m

1w

W

=

R

v

m

24

i

W

B. Portability

1. Task of Portability

A portable Unix application is a single version of a software package that will operate with
minimal changes on any hardware platform that runs Unix.

2. Evaluation Strategy

To evaluate portability of the TOAST software, we reviewed the code and sample
applications. We also ran the Unix utility, lint, on the TOAST software, lint is designed
to detect features of C program files that are likely to be bugs, to be non-portable, or to be
wasteful. It also performs strict type checking. Among the possible problems detected are
unreachable statements, loops not entered at the top, automatic variables declared and not
used, and logical expressions with constant values. Function calls are checked for
inconsistencies, such as calls to functions that return values in some places and not in
others, functions called with varying numbers of arguments, function calls that pass
arguments of a type other than the type the function expects to receive, functions whose
values are not used, and calls to functions not retuming values that use the non-existent
return value of the function.

3. Portability in TOAST

According to the guidelines listed in the TOAST Requirements Document Volume I,
"transportability of code is highly desirable". We found:

a. The Executive is portable.
b. Menu Handler will run on other Unix systems, but may not look fight due to isolated
terminal dependencies (color and fonts).

4. Strengths of Present Implementation

The Executive is portable.

5. Weaknesses of Present Implementation

Menu Handler will run on other Unix systems, but may not look fight due to isolated
terminal dependencies (color and fonts).

6. Recommendation

TOAST isolates WEX calls in the present Executive code. We recommend that this practice

be extended to operating system dependencies as well.

7, Summary

Our overall finding is that the TOAST code is portable.

w

25

C. Comparison: Multi-Level Menu System

to COTS Application Manager

1. Task of a Menu Application System

An application manager manipulates programs and data within an environment.

vv.

m
u

m

2. Evaluation Strategy

To evaluate the capabilities of the multi-level menu system, we compared it to the Visual
shell from Berkeley, a text-based menu system.

3. Multi-level Menu System in TOAST =

TOAST implements a tree Structure menu system. Re description of the menu system on

page 12 of the TOAST Requirements Document Volume I is shown below.

2.3.1 Menus

There ate three levels of menus:

Level 1 - This is the main menu whose choices represent a selection of
processor categories, _

Level 2 - For each level 1 menu option, there is a level 2 menu containing
all the processors available in that category.

Level 3 - The level 3 menus are the input menus for the individual
application programs. Each time the user calls up an input menu,
the default values are displayed. The fast time a menu is used, the
defaults are zeroes and blanks. Some menu fields have non-zero

initial defaults, and some menu fields havesystem defined,
unchangeable defaults. Otherwise, the default values are the most
recently saved values for that menu. Values for a mcAlu axe saved
when the user presses either the ['EXECUTE] orthe [SAVE
MENU] function key. These values are always stored in the user's
SDA. When a level 3 menu is invoked, the user is placed in the
input mode. In order to do anything else, the user must first exit

the input mode. This is done via one of the system function
keys.

4. Strengths of Present Implementation

The TOAST menu application is simple to operate and provides the ability to select an _
application rapidly without risk of selecting the wrong application. It provides an
acceptable level of flexibility and modularity when compared to other text-based systems.

26

11

w

g

u

II

W

W

v

I

W

g

m

5. Weaknesses of Present Implementation

The tree structure of the TOAST application system is somewhat limiting. When the user
needs to move between applications that are located in widely separated parts of the menu
tree, it is somewhat tedious to move through the intervening levels of menus. In most
cases within the current TOAST configuration, it is not too onerous because of the
relatively small number of menu levels, but if the number of menu levels were expanded, it
could become a severe liability.

6. Overall Evaluation of Strengths and Weaknesses

The menu structure works adequately for the current number of levels. However, if the
number of levels expand, traversing the tree structure will become a problem.

7. Recommendation

A useful feature would be a "jump to the top of the menu tree" key to speed up motion
through the tree. Additionally, each menu could be assigned a keyword that allows the
user to jump directly to a particular menu by name, much as IBM's CICS allows invocation

of a particular menu transaction by typing the transaction id assigned to that menu.

m

!

8. Summary

The TOAST program manager -- the multi-level menu system built on Menu Handler and
the Executive services -- provides an acceptable level of flexibility and modularity in
comparison to other text-based menu systems.

D. Comparison: Menu Handler to Text-based COTS Toolkits

1. Task of Forms Generation and Display Packages

Forms generation and display software addresses three categories of functions:

1. Functions to display data with various attributes such as inverse video or a
"protected" attribute

2. Functions to read, interpret, and do some measure of validation on user input
3. Functions to manipulate areas of the screen, such as cleating the screen or

setting up a scrolling region for list-oriented output.

Most forms packages also attempt to enforce a set of paradigms for the behavior of the user
interface in terms of the behavior and appearance of screen objects such as function keys or
menu selection, and the use of text and visual attributes such as color or highlighting.

27

2. Implementation in TOAST

Menu Handler provides forms generation and display for TOAST. According to the
Introduction of the TOAST Menu Handler Version 6.5 Programmer's Guide,

TOAST uses a generic user interface package (Menu Handler) for all data entry
menus, option selection menus, function key definition displays, and tabular
displays. The TOAST Menu Handler performs all of these functions and
provides a common look and feel across all menus and displays. Additionally,
Menu Handler provides those programs utilizing it with the maximum amount
of hardware independence possible. Menu Handler provides only an extremely
limited graphics capabilities: Greek text and Line Drawing text fonts.

m

W

As described in the TOAST Menu Handler V6.5 User's Guide for the Interactive User,
Menu Handler implements CHOICE menus that present a list of options and FORM menus
that resemble a questionnaire. A user can access more options or data than can be

displayed on the screen simultaneously through the use of scrolling menus. Field types can
be display only, user accessible/modifiable, or processing required. Data types permitted
include string, enumerated, integer, real, latitude, longitude, Unix path, Unix file,' time,
and wind formats.

3. Evaluation Strategy

At present, no clearly superior textual interface package is supported on a wide range of
Unix platforms and programming environments. Several approaches to the problem exist
in commercial software, but none have the widespread acceptance within the Unix user
community or the development community to constitute a sig_cant segment of the = =
market. Given the lack of a Unix standard, our evaluation included products from outside
the Unix environment that provided equivalent functionality.

We compared Menu Handler to IBM's SAA applications programming interface, the
VMS/FORMS package for DEC's VAX/VMS systems, and the RXFS package developed
for IBM VM/CMS systems. SAA and VMS/FORMS are widely accepted within the
industry as strategic choices for textual user interfaces; RXFS is a user-developed system
that deals with many of the same issues as Menu Handler.

4. Strengths 0fPresent Implementation

The data display and editing capabilities of Menu Handler are much better developed than
the capabilities provided by the commercial packages. The IBM-based products came the

closest to providing equivalent functionality by providing a number of fairly sophisticated
numerical editing facilities and display attributes (given a terminal capable of 3279 DFT or

extended datastream support), including programmed symbol sets and good color support.
However, the enumerated field types and the flexibility of the Menu Handler date and time

field types represent a facility that would be difficult to accomplish using either package.
The DEC package fared rather poorly in this area, due to the somewhat limited support of
special character sets provided by the VTI00. The VT2xx and VT3xx terminals available
from DEC alleviate some of these problems, but the number of special characters and
attributes permitted is still limited. (Of some interest is the fact that both the IBM and DEC

solutions require specific hardware devices, and in the case of the IBM solution, much of

the data verification is in fact implemented by the hardware.)

28

II

11

w

g

g

!
m

n

Ill

D

J

w

W

V

J

!
lIB

tm =
j_

J

In terms of generalized data input, Menu Handler provides alevel of functionality
comparable to that found in other packages. All packages provided a range of functions for
protecting and unprotecting data, highlighting or dimming areas of the screen on a
programmatic basis, as well as the use of multiple symbol sets and colors on the screen,
subject to hardware constraints. In addition, Menu Handler provides a number of unique
data types and capabilities, written to satisfy user needs, which other packages do not
provide.

5. Weaknesses of Present Implementation

The screen control functions provided by Menu Handler are somewhat more limited than
the other packages in that only clearing of the entire screen page is supported as a primitive,

and it is difficult to establish an independently scrolling region without defining it as part of
a displayed menu structure. VMS/FORMS stands out as the most developed package in
this regard, as the page-oriented hardware structure imposed by the IBM solution makes
asynchronous screen activity difficult.

6. Overall Evaluation of Strengths and Weaknesses

Menu Handler functions adequately. It excels in the display and input validation sections
when compared with similar packages. The screen manipulation routines in Menu Handler
are somewhat limited in comparison with the products evaluated, but sufficient
functionality to remedy the defects can be easily added.

7. Recommendation

Functions to define an arbitrary scrolling region and partial screen erase capabilities
(preferably arbitrary rectangular regions) would enhance the facilities of Menu Handler
greatly.

8. Summary

Menu Handier held its own very well in comparison with two of the major vendors' efforts
and a screen handling package written and enhanced by a member of the review team.

29

E. Data Structures

I. Task of Data Structures

A data structure organizes data elements into functional units.

2. Data Structures in TOAST

The TOAST database is a directory of flat files that include Executive applications, data
lists, Executive menu definitions, session data areas, baseline data, user save areas, and

position data.

The data structures in TOAST are implemented using flat fries.

3. Evaluation Strategy

To evaluate data structures, the team compared flat file design of the current TOAST
implementation to hierarchical database design.

4. Strengths of Present Implementation

We found the flat file approach is flexible, portable, and independent of emerging
standards. It maximizes recoverability, and does not require a database administrator.

5. Weaknesses of Present Implementation

When compared to hierarchical database structures, flat files lose some functi0nali_ in

terms Of inheritance, database linking, recordlinldng, and mu_Ie table lookupS_ -_
Inheritance (chaining similar data values in fields via pointers) reduces disk storage
requirements. Linking and multiple table lookups reduce the number of queries into the
index system. Use of these features promotes resource conservation by reducing
requirements for disk storage, memory, and access time, and generally improves
performance on a real-time system.

6. Recommendation

In general, we found that flat files are appropriate for current TOAST use. When TOAST

migrates to X with a larger user base, a hierarchical database approach could be integrated
into the TOAST Resource Manager.

7. Summary

In general, we found that flat files are appropriate for current TOAST use.

m

iiw

I

ql

IW

m

W

V

m

!
W

V

W

m

lilt

tli

30

iN'

ilia

F. Security

r-

1. Task of Security

The security of a Unix system is measured by system vulnerability to the commonly known
weaknesses present in almost any software operating on a Unix platform. Most of these
vulnerabilities center on how the system responds to attacks from outside the environment
-- usually via network connections -- but internal issues such as password selection and

encryption methods also play a role.

2. Evaluation Strategy

We evaluated the TOAST development system for security problems. We based our
evaluation on the recent SRI International report, "Improving the Security of your Unix

System" (David Curry, 1990). We used the checklist in that document to suggest possible
Unix system weaknesses and then designed tests to determine TOAST vulnerability in
those areas.

We presented our findings in briefings to NASA management and system security officials.

We did not investigate WEX security considerations.

3. Security in TOAST

The TOAST Executive provides a rudimentary access control mechanism in addition to the
standard Unix system access control facilities, assisted and/or hindered by information

provided by the WEX shell. TOAST secunty is based on information resident in an
auxiliary file ($TOAST/access_list) containing a list of Unix userids and associated flight
positions, flight numbers, cycles within a particular flight, and flags indicating that the
indicated user may act as the "lead" for a particular flight and cycle. If this file does not
exist, no access control to the TOAST system is performed.

All other access control is implemented by relying on the security of the underlying Unix

system to prevent hostile users from gaining entry or damaging the system configuration.

4. Strengths of Present Implementation

We found security to be weak in the development environment.

m

5. Weaknesses of Present TOAST Implementation

While in general relying on the security of the underlying Unix system is a reasonable
approach to data integrity and application access control, it unfortunately exposes the
TOAST system to any weaknesses present in the underlying system, including null
passwords, defects in system and network daemons, and other systematic efforts to
circumvent the access control restrictions.

31

TheinternalrequirementthatTOAST runasauserprocesswithoutsetuidO privileges also
effectively negates the Unix permission scheme, as all f'des are owned by the same Unix
uid.

Given these two problems and access to the system supporting the TOAST Executive, a
reasonably knowledgeable and persistent Unix user could infiltrate the TOAST system and
gain unauthorized access to programs and data without excessive effort or time.

6. Weaknesses of the Environment

The Masscomp networking software combines 4.1 BSD and 4.2 BSD network semantics.

This implementation includes many of the bugs exploited by recent network "virus"
programs. Further discussion of these software flaws is inappropriate in a public medium,
but the topic was discussed extensively in the TOAST security briefings.

7. Overall Evaluation of Security Strengths and Weaknesses

TOAST relies heavily on the Unix operating system to provide security. As currently
implemented within the NASA environment, Unix operating systems are not secure.

8. Recommendation

Code is present within the Executive to generate Unix userids and uids dynamically if
setuidO privileges are available at run rime. This code generates a userid and uid
dynamically upon login and uses the generated values for the duration of the terminal
session. By generating these values dynamically -- not from/etc/passwd -- a hostile user
gains little benefit from infiltrating the underlying system, as the information needed to
impersonate a legitimate user of the system is simply not present outside the TOAST =
environment. Use of these generated uids also re-enables the Unix permission facilities, as
each user now possesses a unique uid that can be checked by the Unix
kernel. Enabling these facilities would be very beneficial to the stability and security of the
TOAST environment.

W

W

lp

9. Summary _ : :_/ _ :::_ +,: :_ : :_:

Security is an environmental problem. TOAST can only be as secure as the environment in
which it operates. _ _ _ =. -

u

III.

W

=

z

M

m

W

'm$

32

W

VII. Man/Machine Interface

The discussion of man/machine interface concentrates on the the applications programming
environment at the request of the NASA project sponsors. Some general notes on Menu
Handler's user interface are included, but a detailed examination of the user interfaces of

the applications themselves was not performed.

A. Applications Programming Environment

1. Evaluation Strategy

To evaluate the TOAST applications programming environment, two members of the
evaluation team wrote TOAST applications. Recognizing that programming teams consist
of members with varying levels of experience, we used an entry-level programmer and a
senior programmer to write the applications. The entry-level programmer converted an
existing public domain roladex program in C to run as a TOAST application. The senior
programmer wrote 5 original FORTRAN TOAST applications that displayed text,
displayed a menu, displayed all fields, displayed a dynamically modifiable menu on the
screen, and converted date fields to Julian dates.

To accomplish the task, both programmers read existing documentation, used the vi editor
to design a Menu Handler form, defined the structure and return values for function keys,
and wrote the do_menu loop. To evaluate the application writing effort, our programmers

kept detailed notes on the application programming process with special attention to
problems that they encountered. Other members of the evaluation team debriefed the

programmers and summarized their findings.

The senior programmer took 2 hours to write the FORTRAN applications. The junior
programmer, who was unfamiliar with the vi editor, took 16 hours to create a successful
application. However, he believed that it would take him less than 8 hours to write a next
application.

2. Strengths of the Programming Environment

a. Building Menu Handler applications is relatively easy. Menu Handler requires only a
small number of functions to build an application as compared to the large number of

complicated calls required for other packages.

b. The FORTRAN interface to TOAST provides reasonable services.

c. The more form-oriented the application is the better TOAST will service it. Menu

Handler is especially geared to data entry applications requiring extensive type checking.

d. Use of color was very straightforward. It was straightforward to put text on the screen.

3. Weaknesses of the Programming Environment

a. Documentation was poorly organized.

33

b. Lack of a menu layout program is a serious drawback. One programmer had some

colons missing in the menu definition that caused undesired results when the program ran.
Such formatting details are better handled by a program.

w

4. Recommendation

A layout tool for menu design would speed the application programming process. To
design the menus manually, the evaluation programmers used vi to draw the menu, and

then used a vi function to get the x and y coordinates for each label. A layout editor that
could be used to drag icons like boxes and buttons and create the menu definition file
would be very helpful.

A document that lists the location of the include libraries and compilation order would be
helpful. The information ,was available from the TOAST developers, but was not available
in a written form that could be easily dispersed. ,

An index in Menu l-iandler documentation and a more detailed table of contents would be

helpful. While all the information necessary for programming the applications was
available, it was _cult tO find in the Current manuals.

W

W

u

B. User Interface Capabilities

Following the instructions of the NASA project sponsors, a clewed ex_nati_onof user
interface capa_oilities was not pei'fo_ Our general impression _s_at Menu HancUer's

user interface provides several useful capabilities. It protects users from common
mistakes, traps common errors, and performs data validation well. It has several unique
features that are not found in other similar programs including extended time and date fields
and editable fields in scrolling regions within menus.

_9

L

m

34

vw

_w

VIII. Software Engineering

The review of software engineering examines coding practices (section A), documentation,
(section B), and revision practices (section C). Information was gathered through
reviewing the code, reading available documentation, and conducting interviews.

Our investigation showed that the code is well written, the documentation needs work, and
the formal revision process is thorough, but time consuming. Methods for tracking

problems, changing software, and notifying users of system updates must be rethought to
accommodate an expanding user base.

A. Coding Practices

v

1. Evaluation Strategy

The TOAST developers provided Box source listings for the TOAST software.
Initially, several members of the evaluation team, working individually, reviewed the code
for standard coding practices. They then met as a group to compare and combine their
individual results.

2. Evaluation Criteria

The evaluation team applied standard criteria for evaluating internal software documentation
and coding practice. The specific criteria invoked are listed below.

a. Readability and Layout
b. Use of a Comments Prologue in Subroutines
c. Identifier and File Naming Conventions
d. Extent of Structured Code Practices

e. Top down Design

(Software Engineering, Ian Sommerville, 1989.)

35

3. Implementation in TOAST Software

a. Readability

The code is easy to read and follow. The level of readability is greatly enhanced through
the use of a consistent prologue.

b. Use of a Comments Prologue in Subroutines

The prologue covers the areas shown in Figure 7.

m

Subroutine Name

Author
Syntax synopsis
Description
Hardware dependencies
Examples
Requited files - configuration and status files
Environment variables
Semaphores
Data requirements
Return values
See also section

Notes/diagnostics/warnings
Bugs and history data
Global data section:

Include files - system and user
External declarations - program constants, variables
Calling arguments - input, output, update
Dictionary - local variables, external references,

system and user calls

Figure 7: Prologue used in TOAST programs

The consistency in the prologue makes the code easier to follow. In some of the older
routines, the programmers did not fill in all the fields. However, in several cases, the

comment prologue is much longer than the body of the code for a particular routine.

c. Identifier and File Naming Conventions

Identifiers use the MH or TE prefix to identify constant files and variables relating to Menu

Handler (MH) or the TOAST Executive (TE). Constants follow standard C programming
practice with names in capital letters. In the use of local variables, many of the routines use
the same names.

m

i

g

i

g

Ill

i

D

ill

m

W

36

W

!11

--r

d. Extent of Structured Code Practices

Structured coding practices are enhanced through the use of the Box program. This
program enforces a consistent approach to code development. Use of Box should be
continued.

e. Top down Design

TOAST is extremely modular. The program may have started as a planned design, but
many of the unused code portions indicate use of a bottom up approach as well.

4. Recommendation

a. General Recommendations

While the standard of programming is very high in the TOAST code, the areas of program

history and data checking were identified for improvement.

The development team needs to establish a consistent practice of identifying in the history
section the person who makes program changes. A date trail on the lines that are changed
would be useful although difficult to implement with the current system tools. If the emacs
editor becomes available as a systems tool, a template could be developed that would

automatically leave an audit trail.

We must also point out a failure to test data rigorously before it is used internal to the
Executive. When interviewed, the programmers stated that they rely on Menu Handler's
data checking capabilities to trap problems and maintain good data. They use rigorous test
procedures during the development stage to detect other problems and test data in the code
where it is "important". We note that verifying data arguments returned from a function is
a standard programming practice that should be employed where practical. If a corrupted
array is passed into a routine, it can cause errors that may cause the program or TOAST to
abort.

L--

b. Specific Recommendations

A syntax codebook or a quick reference card for the Executive and Menu Handler would be
useful.

A reference file of local variable names might be a useful tool for the future to help maintain

consistency.

Code debugging will be aided when the flexible debug routine under development becomes
available for production use. The ability to select different areas for debugging rather than
relying on a compiler directive should speed the debugging and verification process.

5. Summary

The overall internal documentation and coding practices evident in the TOAST software is

consistent with industry standards.

37

B. Documentation Review m
W

1. Evaluation Strategy

The evaluation team reviewed copies of the Menu Handler V6.5 documentation and
several documents that were in preliminary stages of work and were not appropriate for
detailed comment. These documents included

1. TOAST Volume I: Executive - draft 11/27/89

2. TOAST Requirements Document, Volume 1 - section On Database Manipulation
- draft 11/04/88

. TOAST Requirements Document Volume I. Executive -
baselined May 6, 1987

TOAST Executive Program Guide forTOAST Version 5.2- 3/29/90

Specific evaluation comments focus on the Menu Handler documentation.

=,

2. Evaluation Criteria

The evaluation team applied standard criteria for evaluating documentation. The specific
criteria invoked are listed below.

a. Levels of documentation for differing skill levels :_
b. Ease of use

c. Task guide organization
d. Simple writing style
e. Use ofexamples
f. Meaningful and complete sample sessions
g. Use of summaries

h. Table of contents, index, glossary
i. List of error messages

(How to Write Computer Documentation for Users, Susan Grimm, 1987)

3. Implementation of Menu Handler Documentation

The Menu Handler Documentation is implemented as 3 manuals:

TO,4_ MenU-l-landler version 613 User's (7uide fot:-i_e in}e-ractive User =

TOAST Menu Handler Version 6.5 User's Guide for the Menu Programmer
TOAST Menu Handler Version 6.5 Programmer's Guide

v

_I
,ip

=_

Ill[

M

'lp

u

IlW

11

W

m

J

38

w

m

4. Strengths of Menu Handler Documentation

The documentation for Menu Handler V6.5 meets or surpasses several of the external
documentation criteria. It provides 3 levels of information with a guide for end users, a
user's guide for programmers, and a detailed programmer's guide. The writing style is
clear and easy to understand. Diagrams are useful and help clarify the data structures.

5. Weaknesses of Menu Handler Documentation

Problem areas for the documentation set include the lack of an index and page numbers, the
need for more examples, and lists of error messages. The absence of alternate paths for
accessing the information makes it difficult for new applications programmers to find the
information they need. This point was documented in the debriefing of two TOAST
evaluation team members who wrote sample applications. All the information that they
needed is in the documentation, it is just hard to access. Adding page numbers and an
index and providing a more detailed table of contents will greatly improve the situation.

Another area for improvement is in the use of examples. Examples of subroutine calls as
well as simple and more complex sample applications would aid the new applications
programmer. The use of templates in the User's Guide for the Menu Programmer is a
good start. However, a small application would also be very useful.

6. Recommendation

a. General Recommendations

The overall utility of a system depends heavily on its documentation. This is especially true
in the case of products that have an expanding user community. We recommend that
completing documentation external to the program source be viewed as a high priority item
and that serious thought be given to providing online help capabilities.

b. Specific Recommendations

For the Menu Handier documentation,

• An index should be added to each manual.

• Examples of subroutine calls as well as simple and more complex sample applications
should be added to the documentation.

• A reference card that lists all the Menu Handler calls and an appendix containing error

messages should be created.

Although still in draft form, the Executive Program Guide gives an excellent overview of
the TOAST Executive. The evaluation team would like to encourage the completion of this

document and suggest creation of a similar guide for Menu Handler.

39

V

7. Summary

The programmers have demonstrated the ability to write good external documentation with
the Menu Handler Documentation and the TOAST Executive Program Guide. A high
priority should be assigned to completing the draft documents.

C. Revision Practices

1. Evaluation Strategy

To gather information on procedures and policies for revising software, we interviewed
managers, users, and developers of TOAST. With management, we asked questions
designed to look at maintenance quality control, the software change boards, the roles of
developers and users in the software boards, review procedures for software and
documentation, frequency iSf review, frequencyi3fFmplementing changes, t/aiisqd-ori
procedures, user acceptance testing, and procedures for centralized change management.

With users, we examined the process for submitting problems and bug reports, the support
infrasmacture for implementing changes and informing users about changes, procedures for
tracking bugs, and tools for recording bugs.

With the developers, we reviewed software transition procedures, backups of old releases,
backward compatibility issues, and use of source code tracking software.

2. Evaluation Criteria

We evaluated the revision procedures based on industry practice and our experience with
provkh_ng Services for a large User basd. _

IiI

IW

W

111

w

1

3. The Revision Process for TOAST

a. Software Revision

Requests for changes to TOAST may be generated by users or developers. We found that
most requests are made by the developers. Change requests (CR's) are made
informally or formally. The informal approach involves contacting one of the developers.
A rfiisre f61-haal approach is Submi_si6hbf a discrepancy report ('DR). _i_

When a developer recognizes that code must be corrected, a DR is presented to the Orbit
Design Panel (ODP), which approves all changes to the TOAST software. The necessary
changes are incorporated into a new TOASTdeliveryl For eac_fthe_l'OAST
applications, a user is responsible for the test plan and verification. That application is

tested and verified by that user whenthe applicati0nap_arsina new delivery.

Test documents, internal testing, and Jest plans are kept by the TOAST development team.
Both bug fixes and design changes are noted in separate history files for each program
module.

w_

roll

m

W

W

W

=

11

40

A summary of all submitted DR's and CR's is made and can be reviewed by the
appropriate group of the ODP. The summary includes the Status of each request, the date
that it was closed out, and the delivery that it will be a part of.

b. Software Control

Changes to the existing TOAST software must be approved by the Orbit Design Panel
(ODP). Once the panel has approved proposed changes, the Configuration Control
Board (CCB) must certify that the test plans generate the appropriate test results. This
board must certify the changes to the software before it is used as flight software.

The ODP was originally the TOAST Working Group (TWG). As flight designers were
included, the name was changed to be more inclusive. The ODP now consists of three
subgroups: Flight Design, Real-time, and Executive.

c. Notification of Changes

When a change to the TOAST software is made, applications that are affected by the change
also will need to be revised. This generates a "ripple" effect through TOAST and its
applications. TOAST does not maintain backward compatibility with prior releases when
changes are made, so it is very important that all affected software is pinpointed and that the
responsible programmers are notified. Currently, no formal means exists to direct
applications programmers to make changes in their code to conform to the changes in
TOAST. The mechanism used for notification of system updates is word of mouth.

4. Problem Areas

The three part organization of the ODP minimizes the meeting time impact for the user
segments, but creates a problem in that no one group is responsible for all of TOAST.
Lack of a central coordinator causes problems in follow up during the implementation,
delivery, and verification phases.

In addition, there is no electronically accessed centralized database for tracking change

requests.

Lastly, wor/:l of mouth notification for pending software changes is clearly inadequate.

5. Recommendation

The TOAST project needs a central adminiswator to coordinate design changes, schedules,
verification, and followup.

The TOAST project needs an online problem tracking system to log and track bugs and

change requests.

All involved programmers should be notified of pending changes via electronic mail or a
newsletter. As the user base expands in size, management of the notification process can

become a very large problem.

41

v

6. Summary

Communications is the key to implementation of successful revision practices. The
involvement of users and developers in the process is a good management practice that
helps to ensure that the product meets user requirements and minimize code rewrite due to
miscommunications. We found that the formal revision process is thorough, but time
consuming. The process for reporting and correcting bugs and for making design changes
will need to change as the user base expands.

w

W

W

W

m

W

W

W

L_

,ira

42

IX. Future TOAST Migrations

The TOAST implementation team is working currently to integrate TOAST into the X
Window System. They developed a set of working notes that appear as the TOAST under
X class, dated January 1990. The evaluation team was asked to study the TOAST under
X plans and recommend potential improvements.

Section A examines the plans for TOAST under X. It gives a background on the X
Window System, discusses the planned implementations, examines problems,
recommends some possible solutions, and provides an estimate of work involved in the

migration process. Section B provides an assessment of the expandability of TOAST.

A. TOAST Under X

1. Evaluation Strategy

We reviewed the planned implementation as documented in the TOAST under X class and
as presented in discussions with TOAST developers. No existing TOAST code employs
the design features presented in this section.

2. The X Window System

The X Window System is a platform-independent windowing system developed by MIT as

part of Project Athena. Industry and academia joined together to create the X Consortium,
a vendor-independent research organization located at MIT that was created to develop the
X standard.

The X window system offers several enhancements to both the software and the operating
environment. This approach is:

a. Platform-independent user interface and user interaction paradigm.
b. Portable. Code can produce identical results on a wide range of platforms.
c. A flexible interface for displaying textual and graphic information.

d. A strong base for more structured graphical tools.

We will discuss each of these features below.

43

Platform-independent user interface and user interaction paradigm.

The X line protocol used to communicate from a client program implementing an
application program to the X display server software controlling the actual hardware
screen, keyboard and pointer device(s) is rigidly specified by the X Consortium. It builds
an abstract model of a raster display with an arbitrarily timed number of bit planes, a
keyboard, and one or more pointer devices and provides a set of image primitives (point,
line, polyline, etc.) and image transformation operations independent of the actual hardware
or operating system software involved. Any client program employing the X protocol can
interoperate directly with any X server software and accomplish identical operations.
The X window system has become the de facto industry st,andard for graphicaI _r -
interfaces (GUIs), and represents a significant direction in compatibility and interoperability
with heterogeneous networks of workstations.

Portable code that can produce
platforms.

identical results on a wide range of

The X libraries have a standardized set of function bindings for the C language, with a
limited FORTRAN binding under discussion (see section 4e). X sessions consist of the
client generating a stream of imaging transactions on the abstract display device provided
by the X window system and allowing the X server software in control of the real
hardware to make the necessary translations to perform the correct action on the local
hardware or to substitute the closest corresponding action (e.g., requesting color on a
monochrome display device will result in gray-scale output if possible, otherwise the server
will use white and black). The abstraction layer insulates the client application from

needing any specific information about the hardware used to interact with it.

Flexible interface for displaying textual and graphic information.

X is a raster-based system with some structured operations for procedurally defined objects
and compound objects such as polylines and geometric shapes. Graphics and text can be
freely intermixed, as displayed text is a special case of high-speed block raster operations.
Multiple fonts and symbol sets can be displayed on any X server device. Font glyphs are
defined using a procedural language and can be generated at different resolutions and sizes

to suit the displaying system.

Strong base for more structured graphical tools.

X provides a s_ng underlying layer for the Construction of more application-oriented

graphical objects and toolkits and is, in fact, the underlying transport of several
commercially available implementations of the PHIGS and GKS. Programs currently
using the Programmer's Hierarchical Interactive Graphics System (PHIGS) or the
Graphics Kernel System (GKS) could be integrated easily as part of a transition
methodology, or as a final goal using an implementation of PHIGS layered over X.

Each of these features provides an important enhancement to the current TOAST

implementation. Below, we discuss the TOAST Development Team's plans for TOAST
under X.

w

=_Jr

lid

ImP

II1

lID

II

u

g

w

D

II

m

I

lid

V

44

3. The Plan for TOAST under X

The TOAST software is workstation software that was developed for the trajectory flight
controllers. It consists of an Executive, which provides an operating environment and
coordinates user applications, and Applications, which are user programs. It provides the
capability for several users to access TOAST simultaneously (multi-user), more than one
process to execute simultaneously (multi-tasking), TOAST users to access multiple
independent concurrent sessions (multi-session), and for users supporting more than one

flight control position to simultaneously use TOAST (multi-position). Transparent
cooperative processing (multi-machine), where users access resources across a network, is
a future goal.

Executive Applications interact directly with users to provide requested services. The
current version of TOAST implements the TOAST Application Manager, the database

manager, session state, delogging, command line, and calculator. The X implementation
of TOAST proposes implementing several features that are baselined in the TOAST
Requirements Document Volume I, specifically:

• Clocks - system display of several time of day and user timer clocks

• Discrete Data Displays (DDDs) - event status lights

• Status displays - to display the status of the TOAST system processors, the user's
session, and selected processors

• "Lead" user functions - provides mechanism for position "leads" to maintain baseline
data and user access

Other system enhancements proposed in the plans for TOAST under X include:

• Active Window Display - identifies active TOAST windows and status

• Mouse help display - provides help on using the mouse in various windows

• TOAST Resource Manager - provides data file access coordination, resource sharing for
applications, and event notification for processes.

The TOAST under X plan proposes migrating the MAD design model. By using this
conceptual model, adding an X-based user interface to an existing program would be non-
intrusive, as it would involve only recoding the input and output pieces of the applications.
The code performing the actual computations need not know whether the older text-based
interface or the X-based interface is in use.

Not all of the implementation plans are documented in the Toast under X class notes.
Many of the implementation details being considered are still in the discussion stages. Our
understanding of the implementation plans is thus largely drawn from extensive
conversations with the TOAST developers. In the discussion that follows, we focus on
implementation issues, which in our opinion, may present difficulties.

45

4. Discussion of Implementation Plans

The implementation plans present levels of difficulty that range from features that can be
implemented using existing X tools to features that will require extensive effort. Our
recommendations (section 5) for possible implementation follow the discussion of the
difficulties.

a. Features that Can be implemented using Existing X tools

= =

_s

1IF

J

The TOAST under X documentation presents a number of features that should be fairly
simple to implement using tools provided by theX programming community or
modification of source code provided on the MIT X distribution tape. Figure 8 shows the
features that can be easily implemented using existing tools:

il

Feature
Active window display
Mouse help display
Calculator
Log window

Status displays
Session state indicator

(public/private)

Icon Manager display in X I 1R4 twin
xman

xcalc with modifications for user-def'med constants.
A short program using the AsciiText

file browser widget
A short program with a graphic indicator object
A short program with an on/off radio button indicator

to toggle state

Figure 8: Features that can be Implemented using Existing X Tools

W

W

b. Clocks and DDDs

Two features will be very difficult to implement, especially in heterogeneous multi-machine

networks: globally synchronized clocks and arbitrary event notification (DDDs).
Essentially, these two aspects involve the development of network services that are not
currently part of the TCP or OSI specification suite, and thus represent a significant
development effort. While the research community is investigating these problems,
production implementation as standard network services is still some time in the future. At
this stage, the Network Time Protocol (University of Maryland) and Zephyr (MIT Project

Athena) may offer possible choices, but further_ evaluation is required._.

c. Single Window

The industry standard calls for the user interaction model to be a window per application
managed by a standard window manager such as twin or gwm. The presentTOAST under
X plans suggest on operaffon mode in which the TOASTExecutive create a single Iarge
Window and perform its own window and screen management within the bounds of the
base window created by the TOAST Executive.

u

m_

Iw

W

II

46

11

L

d. Function Keys

Function key support as presented in the document is more of an aesthetic problem than a
real technical setback. Implementing function keys as a separate window mapped by the
Executive will generate significant flicker when a new application is brought to the front
and its key set is activated.

e. TOAST Resource Manager

In general, we found the TOAST Resource Manager (TRM) specification to be a reasonable
set of services with only one possible problem: the current event queuing system is

susceptible to a runaway process flooding the queue with high priority requests and thus
locking out lower priority status and query requests. This condition, and indeed, good
performance of the Resource Manager in a high-volume multi-machine network, will
require a modified algorithm to ensure that lockout is difficult or impossible. One possible
solution is a multiple bucket time-slicing algorithm to ensure that for time quanta t, a fixed
(but tunable) number of lower-priority requests axe processed after each n high-priority
requests. The current design does not allow lower-priority requests to change the state of a
managed resource, thus removing the possibility of a race condition within a quanta.

An area that is not currently addressed within the TRM design is expansion to multiple
machine queues for shared resources such as telemetry data acquisition devices or special
instrumentation. The TRM specification provides no mechanism to transfer control of a
locked resource to a backup copy in case of primary failure, nor any method of informing
lock holders of the failure and the transfer. The solution is somewhat dependent on the

arbitrary event protocol (AEP) used for the DDDs, thus the design of the AEP must take
this problem into account.

5. Recommendation

a. Use Xl 1R4 Software for X Window Implementation

Many tools are provided on the X distribution tape, and others are available from the X
user community and the public domain. We strongly suggest that NASA obtain and use
the source on the X11 release 4 tape as the basis for any further implementation, even
though the current implementations provided by the current hardware vendors implement
earlier releases of the X environment. In most cases, the source will work with minor

modifications to accommodate minor changes in the X function bindings between releases.

b. Use an existing X window manager and xpseudoroot

The current design proposes a rewrite of tools such as a window manager and menu
system that could be constructed using available X tools. A more consistent interaction

paradigm is to implement each TOAST application's input and output sections as X clients
that interact with a standard window manager, perhaps _mplemented in place of the current

WEX window manager, or using a phantom X display generated by the xpseudoroot
program. (A phantom display provides a simulated display that exhibits all the properties
of an X server interacting with real hardware. This includes the ability to use a separate

window manager.)

47

Muchof thefunctionalitydescribedin theuserinteractionportionof thespecificationis
essentiallythefunctionof awindowmanagerprogram(i.e.,moving/resizingwindows,the
currentactivewindowdisplay,displayobjecthelp,etc.). Severalgoodwindow managers
arealreadyavailablewithin theX communityandrepresentyearsof collectiveeffort that
cannot and should not be duplicated lightly. We feel that the X1 l release 4 of twm (the
Tabbed Window Manager) can be configured to perform the required functions with little
or no enhancement to the window manager code.

Coexistence with WEX presents a somewhat more difficult problem. However, using
xpseudoroot allows coexistence with WEX by configuring the standard environment to
allow the WEX window manager to control the real display and allowing the TOAST
Executive to create a number of phantom displays. Windows created by TOAST

applications would appear within the window representing a phantom display and would be
managed by an instantiation of twm configured to manage that phantom display.

d. Plan to take advantage of multiple windowing capabilities.

The specification describes moving a heavily terminal oriented design into a workstation

environment without modifications to take better advantage of the facilities provided by a
workstation. The current plan offers the user the ability to interact with only one
application at a given time, which is a holdover from earlier implementations and hardware
platforms. X provides straightforward multiple window handling capabilities, which the
design should allow and, in fact, encourage.

e. Implement the function key display attached to the side or bottom of the application's
main window.

This approach would allow a single screen update to occur, minimizing display flicker and
transactions from the client to the X server. While somewhat different from the current

implementation, the approach works well with the X paradigm and uses machine and
screen resources efficiently.

ul

iiw

W

II

u

V

w

m

w

48

r_
H

=

v

f. Limit the use of FORTRAN to applications.

FORTRAN presents a serious problem to Unix systems. The language definition lacks
many of the data types required to deal with the byte stream I/O model and extensive use of
pointers required by the Unix I/O paradigm of "devices are special cases of files". While
the FORTRAN 88 language committee has introduced a POINTER type into the language
definition, we can expect a number of years to elapse before FORTRAN 88 is widely
accepted.

Given this problem, interfacing FORTRAN routines with X -- a system that depends on
pointers, functions with a variable number of arguments, and structure data types -- is
difficult to implement in a portable manner. The implementation requires interface routines
written in C to handle interactions with the window system and rework data and values into
forms that can be processed by FORTRAN routines. Such an interface can be built, and in
fact is the current method of calling Menu Handler services from FORTRAN programs, but
it will become more difficult as the X environment progresses into object-oriented
languages such as C++.

In the long term, the use of FORTRAN should be limited to the application portion of the
M-A-D model with the menu and display portions of the application written in C to allow
the best use of the window system facilities while retaining the large base of FORTRAN

applications developed over time.

In the shorter term, NASA may wish to investigate the use of named pipes to communicate
to C programs dealing with the user interface. FORTRAN has no problems coping with
file processing, and the named pipe facility in the SVID provides the ability to treat a pipe to
another user process as if it were a file.

6. Evaluation of Extent of Code Revision to Migrate TOAST to X

1. TOAST Executive

The TOAST Executive will not require extensive modification. Minimal changes will need
to be made to allow for creation of a phantom display instead of modifying terminal
parameters and status. Any dependence on the Unix stdin/stdout/stderr file handles should
be removed. They cannot be implemented in the X environment.

2. Menu Handier

Menu Handler will need to be almost completely rewritten, retaining only the code to read

and parse menu definition files and do field validation, which represents only 10% of the
currently existing code. We estimate that an X expert would require roughly 1 year to
rewrite Menu Handler to provide the current text-based functionality.

49

M

B. Expandability
i

Since TOAST is growing to meet the requirements of multiple user groups, it must expand
to satisfy these needs. Advantages and constraints of the current version in relation to
expandability are shown in Figure 9.

Advantages of Current Version

a. TOAST does not have constructs that inhibit portability to other Unix

systems.
b. TOAST is not memory intensive.
c. TOAST uses text f'des for configuration.
d. Migration to X enforces standards compliance and increases portability.
e. The Menu-Application-Display model can address new capabilities
independent of applications.

Constraints of Current Version

a. Design reliance on semaphores.
b. FORTRAN 77 interface.

c. Current Masscomp software license agreement limits the number of users to
8 per machine.
d. System V semantics for shared memory have problems in a multiprocessor
environment.

e. Performance of the TOAST Resource Manager event queuing will constrain

throughput.
Figure 9: Expandability Advantages and Constraints of the Current Version

Our overall assessment of expandability of the TOAST software is that the advantages of
the current version outweigh the constraints. However, unless event queueing is

redesigned, TOAST R-esource Manager perform-_in6ew_I1 impact expandabilityadverseiy
(see section A4 above).

lip

l

E

u

m

m

lIB

II

i

m

= • . . _

m

If

z

II

m

h_

111

50
i11

I!

X. Industry Perspective

To provide
computing
areas.

recommendations for future TOAST directions, we researched emerging
technologies. In this section, we present a brief discussion of the following

A. Graphical User Interfaces (GUI)
B. Standard Graphics Packages
C. Database Systems
D. Distributed Authentication Systems
E. Network Services

F. Distributed Operating Systems

We will address their impact on TOAST in the section XI.

.._...

A. Graphical User Interfaces (GUI)

The industry is moving towards simplicity of user interaction and standardization within a
potentially heterogeneous hardware and software environment. User interaction

paradigms that cannot adapt to these two criteria are being abandoned in favor of more
compatible approaches, represented by the selection of the X Window System as a basis
for complex graphical user interfaces. Proprietary windowing and graphics systems are
losing market share in the general purpose workstation and terminal market.

While the hardware-independent specification of X offers the industry a basic platform of
screen, keyboard, and pointer handling operations, these operations are generally
considered to be difficult to use directly in application programs due to the low level of the
X library calls. In ordinary practice, the X library calls are combined into procedures that
implement a more complex object (such as a slider or pushbutton) called a widget, which is
then employed in applications program. Three major commercial libraries of widgets hold

significant market shares: the Motif widgets from the Open Software Foundation, Open
Look from Sun/Unix International, and the Project Athena widgets evolved as part of the
Athena educational computing project at MIT. At this point, Motif and the Athena widgets
seem to hold a significant advantage in terms of number of users. Motif was the first
commercial widget package to provide a strong programming interface at a reasonable cost.
The Athen_i widgets are provided with the X distribution tape at no cost.

B. Standard Graphics Packages

Graphics are becoming increasingly important to support design, computation, modeling,
and simulation. The Programmer's Hierarchical Interactive Graphics System (PHIGS)
represents the industry's current direction as a platform independent graphics library.
PHIGS has ANSI standard bindings for C and FORTRAN, and includes significantly
enhanced functionality when compared with GKS or GKS-3D. The PEX (PHIGS
Extension to X') project plans to release a freely distributable PHIGS toolkit for X later this
year, and several commercial implementations of PHIGS for X are available from IBM and
DEC as well as other vendors.

51

C. Database Systems

In general, Unix is not a congenial platform for database systems due to the design of the
underlying UO code (emphasis on character by character I/O vs. block-oriented 1/O). While
most solutions in this area tend tO be vendor-specific.OhitIe (Oracle Ctrp3, Ingres
(Ingres Corp.), and Unify (Unify Corp.) are used on a number of different platforms and
represent reasonably strong database query engines _ _

Standard Query Language (SQL) is the common query language for almost all DB systems.
Many systems combine SQL with a 'query by example' module to translate English queries
to the equivalent SQL statements. As an enhancement to traditional querying, interfaces
using artificial intelligence techniques such as Q&A from Symantec are coming into use.

:4 : , - -

D. Distributed Authentication Systems

One of the disadvantages of Unix is its inherently weak security mechanism and the relative
difficulty of authenticating users requesting resturcesTrom a remote system interms of
identity and access control. The granularity of the Unix permission scheme is large, thus
limiting access controls and data protection to relatively large groups based on uid and

group membership. _ i z = _ _" =:

Kerberos (developed as part of Project Athena at MIT) adds a rule-based permission
scheme and a secure 'ticketing' method granting access to controlled resources. As an
auxiliary function to the ticketing system, Kerberos maintains a centrally administered
identity registry, allowing systems to be reasonably certain that users are who they claim to
be.

Obviously such an extensive enhancement of the Unix permission structure is intrusive to
the system configuration as delivered. Utility programs that deal with user authentication,
user files, and network services must be replaced with _fied versions that consult the::
Kerberos server for verification. Fortunately, the replacements have already been eValuated
by the DoD and certified as completely functional replacements.

E. Network Services

Networking is an an integral part of computing in industry. Network services are required

to provide such system services as distributed directories (Unix "yellow pages"), network

remote procedure calls, and remote file access.

At this point in ti_, two protocols are competing fordeliverlng network servi-ces - TCP/IP

and OSI. TCP/IP is a mature protocol developed on the Intemet over the past 20 years.
OSI is a newer protocol that is under development by the International Standards
Organization. ..

Currently, TCP/IP is the protocol of choice. The OSI prot_01 ha s p_blems inthe _e_ of
stability, performance, and behavior under stress. Specifically, the OSI specification is not
stable at this time. In our opinion, it will not be mature for at least 5 years. Many important
parts are still in draft status and are being constantly_re_vised. No current_ OSI
implementation available commercially can sustain the throughput of current TCP/IP
implementations. Behavior under stress is not known since there are not enough OSI

52

m
w

IB

I

m
J

g

g

II

W

wl

m

ID

W

W

m

m

J

implementations available to evaluate its performance under heavy stress in life-threatening
situations. TCP/IP has been extensively stress-tested by the DOD.

v

7

F. Distributed Operating Systems

Distributed operating systems offer the advantage of scalable computer power, which

reduces hardware costs, and direct control over the behavior of the operating system. They
are an active area of research and development at the present time.

Few production distributed operating systems exist today. Amoeba, developed by Andrew
Tannebaum, and Mach, developed at Carnegie-Mellon University, represent the current
state of the art in both stability and flexibility. Mach is used on a wide variety of machines
including the BBN Butterfly, the Unix frontend to the Connection Machine, the IBM/RT,
and the Convex. At the present time, Amoeba runs on the Surt/3 and DEC VAXstation
with other ports under consideration. Both distributing operating systems implement
message passing, object orientation, and compact kernels.

Mach provides distributed services for memory, remote procedure calls, and network
objects independent of location. It has extensions to Unix that support a network time
protocol and arbitrary event protocols. However, Mach is not transparent to application
programs, and distributed parts of the operating system are not invisible. Application
programs must be written to use them. As a further consideration, the BSD 4.3 compatible
version will be expensive as it requires both an AT&T and 4.3 source license.

Amoeba treats multiprocessor group as pools of resources. To the end user, it looks like a
large mainframe system on local area networks CLANs) and wide area networks (WANs),
with the entire matrix of processors available to all machines. For baseline data, the bullet
data server can be used for data that does not change and can perform up to 50 times faster
than a standard Unix system. Amoeba assumes very little of a processor -- CPU, memory,
network connection. It is dynamically reconfigurable; resources can replicate and
processes can migrate. In addition, the present version has an X port, and TCP/IP and OSI
prototypes are implemented. As an added bonus, the software is free and requires no
source license. However, the current implementation is not completely BSD 4.3
compatible. "

53

v

XI. Recommendations for Future Directions
for TOAST

Having briefly discussed some of the relevant trends in emerging computing technology,
we will conclude this report with recommendations of how these technologies could
enhance TOAST. =

Our overall recommendation is:

Plan for a distributed operating environment with
services, such as event notification, authentication and
configuration management, database, and graphical user
interfaces, provided via a high speed network.

While we are not recommending specific products or presenting a design, we Would like to
point out where these features are available at the present time. Specifically,

1. Distributed Operating System

Amoeba has many features that could be useful to future TOAST implementations. The
bullet data servers could be used with baseline data. The system's flexibility and
transparency support redundant resources and configuration management.

Event notification exists in Mach, which has extensions to Unix that support a network
time protocol and arbitrary event protocols. These protocols could be adapted for use in
implementing clocks and DDDs when TOAST migrates to X.

2. Authentication and Configuration Management

Kerberos supports a multi-machine setup and can be administered remotely. It could be
adapted to the TOAST model and would permit TOAST to avoid running as the superuser
(root).

3. Database

Integrating a COTS database program into TOAST would provide an extra level of data
verification in addition to that provided by Menu Handler and could certainly simplify the

TOAST Resource Manager design by off-loading data access control to the database
manager system. Changes to the database could be made automatically with automatic
rollback in case of failure. In addition, the embedded information about the format of the
stored data would allow use of database utilities to extract data from the database.

There are drawbacks to such an approach as well. Databases are complex subsystems
which in almost every case require a full time administrator responsible only for database

operations, including the overhead of maintaining access controls to data tables. In
addition, the complexity of the file structures used by most DBMS' makes regular system
backups an absolute necessity, as reconstruction of a damaged database is often impossible
within a reasonable amount of time.

54

w

J

m
w

= =

II

wl

U

WE_

g

==

W

U

II

ID

4. Graphical User Interface (GUI)

The GOSIP standard is discussing Motif as a possible windowing manager. TOAST
should plan to take advantage of multiple windowing capabilities in future releases.

5. Networks

Changes in the area of network media are rapid. Today, TCP/IP is the recognized industry
leader. In future years, OSI may well surpass today's standard.

F
w

w

55

XII. Further Reading

Future Issues

Series of articles on open visions for the 90s, Unix Today!, February 5, 1990.

Series of articles in Unix Review (vol 8. no. 1) on technology trends of the 90s.

W

Authentication Systems

MIT Project Athena, "Kerberos: A Distributed Authentification System for the Unix
Environment", 1987. Available via anonymous ftp from athena-dist.mit.edu in

directory pub/athena.

The C Language

Harbison, Samuel P. and Guy L. Steele Jr., A C Reference Manuals, Prentice-Hall, New

Jersey, 1984.

Kemigan, Brian W. and Dennis M. Ritchie, The C Programming Language. Second
Edition, Prentice-Hall, New Jersey, 1988.

Cooperative Processing

Altman, Ross, "Are You Ready for Cooperative Processing?", Information Center, April
1990, pp. 20-31. Indepth tutorial on cooperative processing and different styles for
achieving it.

Gantz, John, "Are you ready for cooperative processing?", Networking Management,
April 90, pp. 54-55. Short introduction to cooperative processing with a historical
perspective.

m

w

===

W

W

II1

I

Database

Date, C.J., An ln_r_luction to Database S wste_s, Addison-Wesley Publishing Company,
1983.

Edelstein, Herb, "Distributed Databases", DBMS, September 1990, pp. 36-48. Addresses
issues relating to distributed database technology.

II

U

m
W

u

l

56

W

= ,

.,._..

Distributed Operating Systems

Boyes, D. and R. Collins, The Mach Papers, CMU Press, 1989.

Cornell Theory Center, "The ISIS Distributed Computing Environment", 1989.

The Mach Operating System, CMU technical reports 989-1143, Carnegie-Mellon
University.

Lo, Virginia, Mark Vandewettering, George Rankin, Jeff Eaton, et. al., "EXODOS: A
Distributed Operating System", Tech Report 79, University of Oregon, Department
of Computer Science, 1988.

Mullender, S.J., G. van Rossum, A.S. Tanenbaum, R. van Renesse, H. van Stavernen,
"Amoeba--A Distributed Operating System for the 1990s", IEEE Computer
Magazine, May 1990.

Tanenbaum, A.S., and S.J. Mullender, "An Introduction to Amoeba", from the Amoeba

papers available from Addison-Wesley first quarter 91.

Wayner, Peter, "Distributed Applications with Vision", Unix Review, June 1990 (vol 8.
no. 6), pp. 58-62.

Documentation

Grimm, Susan J., How to Write Computer Documentation for Users, Van Nostrand
Reinhold Company, New York, 1987.

Katzin, Emanuel, How to Write a Really Good User's Manual. Van Nostrand Reinhold
Company, New York, 1985.

Graphics

DeGroot, Marc, "Virtual Reality", Unix Review, August 1990 (vol 8. no. 8), pp. 32-36.
Discusses an emerging computer technology that allows users to interact directly
with objects in a 3D scene.

57

qlW

High Performance Computing/Parallel Processing

Hwang, Kai, and Douglas DeGroot, editors, Parallel Processing for Supercomputers _nd
Artificial Intelligence, McGraw-Hill Publishing Company, 1989.

Ratmer, Justin, "Micros at the Threshold", Unix Review, April 1990 (vol. 8. no. 4), pp.
36-40. Describes parallel processing technology built on microprocessors. Rattner
is founder of Intel Scientific Computers, and is principal investigator for the
Touchstone project, funded jointly with DARPA and Intel to develop a parallel
supercomputer capable of performing 150 GFLOPs.

Reed, Daniel A. and Richard M. Fujimoto, MulficomDuter Networks: Message Based
Parallel Processing, MIT Press, 1987.

Wallach, Steve, "Supers Built to Fit", Unix Review, April 1990 (vol. 8. no. 4), pp. 45-
50. Describes supercomputer architectures for the future and issues concerning
their programming environments. Steve Wallach is one of the founders of Convex
Computer Corporation.

Networking

Black, Uyless, Computer Networks: !:h'_oto__ols, Standards, and Interfaces, l:_rentice-Hall,
Inc. 1987.

Case, J. and J. Davin, M. Fedor, M. Schoffstall, "Keeping It Simple", Unix Review,
March 1990 (vol. 8. no. 3), pp. 60-66. This article is an introduction to SNMP
(Simple Network Management Protocol). _......_ " _.........

Comer, Douglas E.,][n_¢rnetworking with TCP/IP: Principles. Protocols. and
Architecture, Prentice-Hall, Inc., 1988.

Davidson, John, Introduction to TCP/I'P, Springer-Verlag, 1988.

Harrison, Bradford T., "TCPflP or OSI: Which Protocol Should YOu Speak?", Dec
Professional, April 1990, pp. 38-46.

Gantz, John, "Advanced technology: Where is it leading us?", Networking Management,
May 1990, pp. 34-48. Summary of new technologies with implications for
networking.

McClain, Gary, "What is OSI and What Can You Expect It to Do for You?", Information
Center, Weingarten Publications, June 12, 1990 (vol. VI, No. 6), pp. 12-17.

Stallings, William, Handbook of Comouter-Communications Standards. Volume 1: The
O_n Systems Interconnection-(OSl) Model and OSI:Reiated Standards, Howard

W. Sams & Company, 1987.

Stallings, William, Handbook of Computer-Communications Standards. Volume 3: The
TCPflP Prgtocol Suite, Howard W. Sams & Company, 1989.

W

J

W

m_
w

z_

Wl

.i

Ill

u

j

W

U

58

Portability

Levinger, Janet,"Portability's TrueColors", unix Review, vol. 8 no. 6, pp. 38-44.

Programming Tools

Kolstad, Rob, "Perl: The Super-Language", Unix Review, May 1990 (vol. 8. no. 5), pp.
30-40. Overview of the Practical Extraction and Report Language (PERL). Three-
part article with subsequent parts appearing in June and July issues.

Wall, Larry, perl: An Improved Shell Programming Language for Urlia Systems. available
from via anonymous ftp to uunet.net under comp.sources.unix.

Security

Abrams, Marshall D. and Harold J. Podell, Computer and Network Security, Computer
Society Press of the IEEE, 1987.

Arnold, Ken, "Setuid Security Blankets", Unix Review, May 1990 (vol. 8. no. 5), pp. 22-
26. Describes security holes in Unix caused by setuid programs.

Russell, D.F., "How to Safeguard your Unix System", Unix Today. t, April 2, 1990, pp.
38-41. Describes steps that will help guard against security breaches. Significance
concerns the holes that are documented and easily accessible in this well-read
journal.

Curry, David A., "Improving the Security of your Unix System", SRI International, April
1990.

Software Engineering

Benson, Scott E., "Give Me Your Tired, Your Poor...", System Builder, April/May 1990,
pp. 27-29. Description of redevelopment engineering and project guidelines.

Hume, Andrew, "Backups: Can You Ever Be Too Safe?", Unix Review, May 1990 (vol.
8. no. 5), pp. 54-58. Describes current Unix backup schemes and future trends.

Martin, James, "Timebox Methodology", System Builder, April/May 1990, pp. 22-25.
Description of timebox procedure for controlling software development projects.

Nurmia, Juhani, "Testing Your Testing Program", System Builder, April/May 1990, pp.

47-50. Short article on software engineering principles regarding testing programs
and documentation.

Richartz, John, "Software Configuration Management Tools", Unix Review, May 1990
(vol. 8. no. 5), pp. 87-95. Compares CCC and Aide-de-Camp, 2 COTS packages
for software configuration management.

Sommerville, Ian, Software Engin¢¢ring, Addison-Wesley, 1989.

2,--:

59

W

Standards

Dawson, Frank, and Fran Nielsen, "ODA and Document Interchange", Unix Review,
March 1990 (vol. 8. no. 3), pp. 50-56. Tutorial on the office document
architecture (ODA) international standard for passing compound documents
between dissimilar document-processing systems.

Faden, Michael, "Open System Gets Euro Support", Unix Today!, June 25, 1990, pp.
46-50. Describes standards receiving commercial user backing in Europe.

Jackson, Kelly, "Countdown to GOSIP", Communications Week, July 23, 1990, pp.
1,19, 20. Description of the Government Open System Interconnect Profile.

Wagner, Mitch, "Standards Work Marches On", Unix Today!, March 5, 1990, pp. 50-51.
Describes the work of several _ST and IEEE standards committees in the areas of

conformance testing, profiling, X/Open branding, X-Window toolkits, and
security. Defines many of the acronyms that you've often wondered about.

User Interface

Baecker, Ronald M., and William A.S. Buxton, P_Oings in Human-Computer Interaction:
A Muttidisciplinary Approach, Morgan Kaufmann Publishers, Inc., San Mateo,
California, 1987

__entiey, Michaei Brian, _e ViewportTechnician, Scott' Foresmann and Company,
Glenview, Illinois, 1988.

Brand, Stewart, The Media Lab, Viking Penguin Inc., New York, 1987.

Heller, Dan, XView Pro m'amming Manual for Version 11 of the X Window System - An
OPEN LOOK Toolkit for XI 1" Volume 7. O'Reilly & Associates, Inc., 1989.

IBM Corporation, SAA: Overview. GC26-4341, 1990.

KrilI, Paul, "OSF/Motif Getting Nod from Most ISVs", Unix Today!, May 14, 1990,
pp.26, 28. Provides a summary of graphics user interfaces for Unix.

Moran, Robert, "The SAA Shadow Play", InformationWeek, August 13, 1990, pp. 22-24.

Nelson, Ted, _,12I_, Tempus Books of Microsoft Press, Redmond, Washington,
1987. =_ ' _ = _ =

Quercia, Valerie and Tim O'Reilly, X Window System User's Guide. Volume Three,
O'Reilly & Associates, Inc., Caiifomia, 1989.

Shneiderman, Ben, Desiring the User Interface: Strategies for Effective Human-
Comt_uter Interaction, Addison-Wesley Publishing Company, Reading,
Massachusetts, 1987. :..............

Shu, Nan C., Visual Pro_m'amming, Van Nostrand Reinhold Company, New York, 1988.

w

m
fIR

J

L--

1If

III

u

J

g

11

Ilm

W

w

60
W

Ill

Sun Microsystems, Inc., OPEN LOOK; Omphical User Interface Application Style
Guidelines, Addison-Wesley Publishing Company, Inc., Massachusetts, 1990.

Sun Microsystems, Inc., OPEN LOQK Graphical User Interface Functional Specification,
Addison-Wesley Publishing Company, Inc., Massachusetts, 1989.

Miscellaneous Articles

Erickson,Tom, "Choosing the Right Metaphor", Apple Viewpoint, Apple Computer, April
1, 1990, pp. 1-4. Discusses metaphors for designing user interfaces.

Schuman, Evan, "GM Issues Wish List", Unix Today.t, March 19, i990, pp. 1, 52.
Describes the software and hardware requirements for EDS's workstation criteria.
Of significance is a requirement for OSF/Motif, X-Window, PHIGS moving later
to PEX, NFS, and POSIX.

61

..._,.

XIII. Acknowledgements W

The TOAST evaluation team would like to acknowledge the help of several people who
provided support for the project.

J

Mike Evans, NASA contract supervisor and TOAST engineer _

Diane Campbell and Ken Wallis, TOAST Developers, who answered numerous questions

Erick Rivas, a senior Computer Science student at UH Clear Lake, who provided
programming support

Mark Grubbs, a senior Computer Science student at Rice University, who provided
programming support

Julie Grubbs, who performed interview transcriptions

Melodee Schaller, who provided technical writing support

Dwayne Fontenot, a senior Computer Science student at Rice University, who developed
the graphics for the evaluation presentations

And all the NASA and contract personnel who participated in the interviews.

g

J

=

I

=

g

m

g

g

W

W

62

l

